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ABSTRACT 

 
DEVELOPMENT OF RELIABILITY-BASED MAINTENANCE POLICIES 

FOR HAUL TRUCKS IN A SURFACE MINE 
 

 
Sarıgül, Mert 

Master of Science, Mining Engineering 
Supervisor: Assoc. Prof. Dr. Onur Gölbaşı 

 
 

September 2022, 102 pages 
 

 
 

The growing production market and the resultant increase in raw material 

requirements create pressure on mining companies to achieve production at a higher 

rate by keeping unit operating costs manageable. It is recognized that the 

performance of mining machinery, maintenance downtime profiles, and operating 

cost variations are the main parameters effective in the sustainability of machinery 

fleets. On this basis, developing robust and up-to-date maintenance policies 

regarding operation dynamics and fleet machinery configuration is vital for mining 

production.  

A maintenance policy embodies various work packages such as corrective repair, 

corrective replacement, preventive replacement, on-condition maintenance, and 

regular inspections. Which packages need to be included in the maintenance policy 

for which components depend on repairability or replacement conditions of 

components and the expected financial benefits of each decision. Moreover, 

reliability and maintainability behaviors of system components are highly effective 

in the decision-making process since a maintenance policy should provide a balance 

between over-maintenance and under-maintenance.   

This study intends to develop reliability-based maintenance policies using fault tree 

analysis for a truck fleet, including six trucks operated in a surface coal mine in 
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Türkiye. Seven maintenance policies for improving reliability were evaluated and 

compared according to their contributions to operating cost and fleet availability. 

The policy contents generated an availability variation between 59% and 66%.  

 

Keywords: Fault Tree Analysis, Mining, Haul Truck, Reliability, Maintenance 
Policy  
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ÖZ 

 
BİR AÇIK OCAK İŞLETMESİNDE KULLANILAN TAŞIMA 

KAMYONLARI İÇİN GÜVENİLİRLİK TABANLI BAKIM VE ONARIM 
POLİTİKALARI GELİŞTİRİLMESİ 

 
 

 
Sarıgül, Mert 

Yüksek Lisans, Maden Mühendisliği 
Tez Yöneticisi: Doç.Dr. Üyesi Onur Gölbaşı 

 
 

Eylül 2022, 102 sayfa 
 

 
 

Büyüyen üretim pazarı ve buna bağlı olarak hammadde gereksinimlerindeki artış, 

madencilik şirketlerine birim işletme maliyetlerini kontrol altında tutarak daha 

yüksek oranda üretim gerçekleştirme baskısı yaratmaktadır. Maden makine 

performansları, bakım süreleri ve işletme maliyetlerindeki değişimler, makine 

filolarının operasyonel sürdürülebilirliğine en çok etki eden parametrelerdir. Buna 

göre, üretim dinamikleri ve filoda yer alan makinelerin konfigürasyonu dikkate 

alınarak güçlü ve güncel bakım-onarım politikalarının geliştirilmesi, madencilik 

üretimi için hayati öneme sahiptir.  

Bir bakım-onarım politikası; düzeltici onarım, düzeltici değişim, önleyici değişim, 

şartlı bakım ve düzenli denetimler gibi çeşitli iş paketlerini bünyesinde barındırabilir. 

Hangi bakım-onarım paketinin politikaya dahil edilmesi gerektiği, bileşenlerin tamir 

edilebilirlik veya değişim koşullarına ve her bir kararın beklenen finansal etkisine 

bağlı olarak değişebilmektedir. Aynı zamanda, bir bakım-onarım politikasının aşırı 

bakım ve yetersiz bakım arasında bir denge teşkil etmesi gerektiğinden, sistemdeki 

bileşenlerin güvenilirlik ve onarılabilirlik davranışları karar vermede oldukça 

etkilidir.   
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Bu tez çalışması, Türkiye’de bir yerüstü kömür madeni işletmesinde kullanılan altı 

adet kamyondan oluşan kamyon filosu için hata ağacı analizi kullanarak güvenilirlik 

tabanlı bakım-onarım politikaları geliştirmeyi amaçlamaktadır. Filo güvenilirliğini 

artırmak için yedi farklı bakım-onarım politikası karşılaştırmalı olarak 

değerlendirilmiştir. Bu politikaların, işletme maliyeti ve filo kullanılabilirliğine 

etkileri tartışılmıştır. Farklı bakım-onarım politikalarının, kullanılabilirlik oranında 

%59 ile %66 arasında değişen bir etki yarattığı gözlenmiştir.  

 
Anahtar Kelimeler: Hata Ağacı Analizi, Madencilik, Nakliye Kamyonu, 

Güvenilirlik, Bakım Politikası 
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CHAPTER 1  

1 INTRODUCTION  

1.1 Background  

Mining is a machine-intensive sector that intends to extract economically-feasible 

mineral reserves using different mining techniques and equipment fleets 

characterized according to the exploitation method. The most popular surface mining 

technique, open-pit mining, heavily uses truck and shovel dispatching systems to 

extract and haul ore and waste materials. Selecting shovels or excavators should be 

performed regarding annual production targets, while trucks should be appropriately 

matched in a way that production of excavating equipment should not be interrupted. 

Therefore, the number and capacity of specific types of trucks (truck fleet 

configuration), availability and maintainability aspects, operator efficiency, and 

cycle time are crucial parameters for the effective scheduling of periodic production.  

At this point, trucks in a mining area must be monitored attentively regarding their 

operability and operating cost values. Many periodic mining reports show that trucks 

can contribute to more than half of the operating cost in an open pit since their 

consumables, like fuel, tires, lubricating oil, and other spare parts, are used 

frequently and add to the production cost by a remarkable amount. In addition, trucks 

do not only cause direct costs but also lead to unexpected revisions in the production 

schedule in case of maintenance downtimes during operation. Increasing occurrence 

frequency of failure modes, especially in complex components of a truck, may cause 

deterioration in their operating mechanisms resulting in a jump in unexpected 

downtimes. Therefore, the characterization of truck components and sub-systems by 

considering their up-to-date conditions is critical for robust production and 

maintenance plans. In this way, different system components can be maintained in a 

combination of varying maintenance work packages to improve system reliability.  
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The current thesis study intends to characterize the mining truck employed in an 

open-pit mine to gain insight into their uptime and downtime profiles so that an 

optimal balance in preventive and corrective work packages of maintenance policies 

can be developed.  

1.2 Problem Statement 

Mining equipment should be operated at high capacities in demanding working 

environments. Since mining production highly relies on the operability of these types 

of machinery, their uptime and downtime characterizations become crucial in 

building up robust work schedules so as not to cause any interruption in production. 

At this point, mining production is generally evaluated under two primary 

operations: excavation and haulage operations. Most of the main operations in 

surface mines are performed using truck and shovel/excavator dispatching systems. 

Proper planning of these operations requires an attentive maintenance policy for 

trucks and excavators due to their direct impact on production compared to auxiliary 

operation equipment such as graders, dozers, loaders, and water trucks since any 

delay in auxiliary equipment can be compensated in a way not to interrupt 

production. It is expected that improper determination of reliability and 

maintainability behaviors of trucks leads to an observable increase in operating cost 

and production loss due to a drop in equipment reliability and a jump in maintenance 

durations 

1.3 Objectives and Scopes of the Study 

This study aims to characterize the reliability and maintainability behavior of trucks 

operating in a surface coal mine and offer multiple reliability-centered maintenance 

policies for the fleet. The study entails achieving the sub-objectives below: 
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i. Decomposition of a truck system into its functional sub-systems, 

ii. Preprocessing of uptime and maintenance downtime data to obtain reliability 

and maintainability functions of truck subsystems, 

iii. Developing a fault tree diagram for the truck fleet for assessment of system 

reliability and the weakest chains in the reliability variation,  

iv. Introducing different maintenance work packages into the fault tree 

simulation environment and observing the changes in total maintenance cost 

and system availability for each maintenance policy. 

A fleet including six trucks employed for joint production in a surface coal mine was 

considered under the study’s scope. Four years of dataset covering the records with 

detailed expressions on maintenance activities were utilized in the analyses.  

1.4 Research Methodology 

The main research methodology steps are given as follows: 

i. Decomposition of systems: Trucks in the fleet are evaluated using 

maintenance records, expert opinions, and machinery catalogs. Sub-systems 

and components to be analyzed are determined so that each sub-system 

embodies functionally-related components. 

ii. Preprocessing of maintenance data: Each downtime and uptime record is 

classified into related subsystems, and the time-dependent behavior of each 

dataset is discussed with time series and data trend analysis.  

iii. Determination of Parametric Values for Reliability and Maintainability 

Functions: Each subsystem's perfect and imperfect maintenance profiles and 

their deterioration levels are evaluated to determine their reliability (time 

between failures, TBF) and maintainability (time to repair, TTR) functions.  
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iv. System Reliability Estimation with Fault Tree Analysis: System and sub-

system configurations holding different dependencies are developed in a fault 

tree analysis environment so that contribution of each element to system 

reliability in time can be evaluated. 

v. Development of Reliability-Centered Maintenance Approaches: Using the 

stochastic uptime and downtime dependencies in the fleet, various 

maintenance policies covering different combinations of corrective repair, 

preventive inspections, and preventive component replacement work 

packages for changeable maintenance effectiveness levels are simulated in 

the fault tree environment. In this way, how the total maintenance cost and 

fleet availability are affected could be monitored by revealing the individual 

effects of each subsystem on the fleet performance. 

1.5 Expected Contributions of This Thesis 

The wear and tear of equipment components in time and the increasing frequency of 

corrective maintenance requirements can cause issues in operation planning in 

mining areas. Therefore, system and sub-system behaviors require continuous 

monitoring and performance evaluation to develop a proper task allocation for 

equipment. The methodology presented in this thesis study can be used to understand 

the top-to-bottom characterization of mining equipment. In this way, deterioration 

levels of components and the weakest chains in system reliability can be detected, 

and specific and effective maintenance policies can be built up. 
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CHAPTER 2  

2 LITERATURE REVIEW 

2.1 Introduction 

This thesis study presents a systematical methodology for evaluating the system 

reliability of a truck fleet using fault tree analysis and offers different reliability-

centered maintenance policies that can contribute to the system's operability. 

Accordingly, this section presents some background information on reliability and 

maintenance concepts and their applications in the mining industry. At this point, 

system reliability analysis is discussed in Section 2.2 with a theoretical part and a 

common implementation method integrating into the maintenance concept. Section 

2.3 presents the related works previously completed for mining systems, and Section 

2.4 briefly summarizes the current literature chapter.  

2.2 System Reliability Analysis 

This section discusses the reliability concept and its relationship with maintenance 

decisions to provide background knowledge for the analyses performed under the 

scope of this thesis study. The primary objective of a system reliability analysis is to 

obtain a failure distribution of the entire system utilizing the failure distributions of 

its components. The effect of stochastic component behavior on system operability 

can be observed briefly in Figure 2.1. Since each component and related failure 

modes generally occur in highly random intervals, system uptime behavior is also 

randomized. Therefore, understanding the probabilistic approach to system 

operating and downtime profiles is crucial when developing maintenance policies.    
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Figure 2.1 System Reliability Analysis Workflow (House, 2012) 

2.2.1 Reliability Concept 

Reliability refers to the probability that an item will perform a required function 

under stated conditions for a stated period. A more recent definition of reliability in 

ISO 8402 Standard and British Standard BS 4778 states that reliability can be 

expressed as the ability of an item to perform a required function under given 

environmental and operational conditions and for a stated period. The term item 

presents any component, sub-system, or system considered to be analyzed. A 

required function may be a single function or a combination of functions considered 

when discussing whether the item is sustaining its functionality or not. At this point, 

all technical items (components, sub-systems, systems) are designed to perform one 

or more (required) functions. These functions can be classified as passive or active. 

Assessing an item's reliability requires specifying the functions and dependencies 

between the functions within the system boundary. In brief, all defined functions of 
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an item should be satisfied for a specified period in actual applications, not just in 

initial factory performance or quality specifications (Rausand & Høyland, 2004). 

Reliability requires the estimation of the probability values in the intended period. 

Probability can be defined as the ratio of the number of times we can expect an event 

to occur to the number of times the trials commenced. The time between intervals of 

consecutive failures for specific failure modes can be used to define the probability 

functions of the target items (US Department of Defense, 2003). Here, the 

probability value for any observation period should be between zero and one. A 

probability value of 1.0 (100%) shows that it is unlikely to have a failure for the item 

at a given time since the probability density function is developed from previous 

failure times much higher than the observation time. On the other hand, if the 

reliability drops to 0.0 (0%), there is a strong indicator of item failure for the 

observation time. The rate of reliability variation in time is one of the customer 

satisfaction measures. If failure occurrences are not below tolerable levels under 

operation conditions, then satisfactory performance cannot be ensured.  

There are three evaluation stages of reliability: design, inherent, and field reliability 

(Murthy et al., 2008). Design reliability is the predicted reliability of the product at 

the end of the design and development phases. The predictions rely on previous 

implementation experiences of similar products, testing of the product or expert 

opinions. Product reliability differs from design reliability due to quality variations 

of not satisfying design specifications in the production stage and/or having errors in 

the assembly process. After the production stage, reliability is referred to as the 

inherent reliability of the product. On the other hand, field reliability or actual 

reliability is estimated from recorded failures and malfunctions experienced in actual 

implementations. A product in use may expose to multiple deterioration phases of 

failure. Therefore, actual reliability can show a remarkable variation from product 

reliability estimations in catalogs if reliability changes depending on usage intensity, 

working environment, and human errors are not considered well in the design phase.  
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System reliability has become crucial, especially for engineering systems used in 

production industries. These systems are getting more complex with the integrating 

of different technologies and require high production capacity under certain 

schedules. The reliability concept helps designers and product users maintain system 

operability above intended levels in prescribed observation periods. In this way, 

overall direct and indirect financial consequences of operating the system can be 

reduced as well as satisfying target availability levels. An operating system is 

expected to have three stages of hazard rate behavior: burn-in, useful life, and wear-

out, as illustrated in Figure 2.2.   

 

 

Figure 2.2 Bathtub hazard rate curve (Dhillon, 2008) 

 

A product is expected to have high failure frequencies due to some factors, such as 

human errors, low-quality parts, bad quality control measures, wrong installation 

techniques, improper usage, and a poor transportation environment. Once the 

product usage is comprehended well with minimized usage errors in time, the hazard 

(failure) rate tends to reduce and comes into balance. This initial period is called a 

burn-in period. On the other hand, the failures occur randomly with expected 

frequencies in a useful life period with a constant hazard rate. The useful life period 

of a product is also used to evaluate its warranty period. Last, the hazard rate shows 

an ascending trend after a while due to the aging of items mainly caused by poor 

maintenance, wear and tear of parts, corrosion, and wrong practices. 
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2.2.2 Reliability Assessment Methods 

There are various methods used in the assessment of system reliability, called failure 

mode and effects analysis (FMEA), Failure Mode, Effects & Criticality Analysis 

(FMECA), fault tree analysis (FTA), reliability block diagram (RBD), network 

reduction method, Markov method and decomposition method (Dhillon, 2004).  

FMEA is one of the common reliability assessment methods and offers the analysis 

of potential failure modes of each system component and their effects on the system 

and its sub-system performance. FMEA can be used in bottom-to-top structure by 

detailing system decomposition and performance effects among different system 

levels and highlighting the weakest points in system reliability. Therefore, designers 

or product users can improve system performance by concentrating more on these 

points. On the other hand, FMECA presents a quantitative evaluation in contrast to 

FMEA by including the criticality of failure modes with their occurrence 

probabilities. In addition, fault tree analysis (FTA) discusses system reliability with 

a top-to-bottom approach by examining failure modes and their triggering factors 

with branching called fault trees. The implementation type of RBD is close to FTA. 

However, it analyzes the survival probability of systems and sub-systems, not failure 

probabilities. Besides, Markov Method uses a set of differential equations to analyze 

repairable and non-repairable systems with these subsequent assumptions; the 

transitional probability from a state to the following one in the finite time interval Dt 

is given by lDt, where l is transition rate (e. g., failure or repair rate) correlated with 

Markov states, the probability of more than one transition incidence in a finite time 

interval Dt from a state to the following one is negligible, and finally, all incidences 

are independent of each other.  

Development of reliability assessment methods was motivated especially following 

World War Two since technological improvements and production rates have shown 

a remarkable upward trend requiring highly reliable machines. At this point, FMEA 

was developed by NASA (National Aeronautics and Space Administration) in the 

1960s for the Apollo project in the USA (Bertsche, 2008). Then, this method became 



 

 
10 

one of the standard procedures applied in aerospace and aeronautical engineering 

applications. Following successful applications in the aerospace industry, the FMEA 

method gained attention in the nuclear and automotive sectors of its systematical 

structure in determining failure modes for systems, sub-systems, and components. 

Its implementation allows the usage of a detailed risk assessment to optimize system 

dynamics and eliminate failure-prone zones as early as possible. FMEA is frequently 

utilized in the development and planning phases of new products. In addition to the 

criticality factors referring to failure mode occurrence probabilities, FMEA turns to 

FMECA to provide a quantitative assessment of system performance risks. 

FMEA is currently used in different production industries. A sample evaluation of 

failure risks for individual belt conveyor components using FMEA can be viewed in 

Burduk et al. (2020). The study embedded the method into many quality 

management methods and standards, such as ISO 9001 and ISO 31000. A risk 

priority number (RPN) was used to rate risk priorities based on records and expert 

experience. The following parameters were addressed in the evaluation of the belt 

conveyor: 

¾ Potential defects for individual elements included in the construction of the 

belt conveyor,  

¾ Their occurrence probabilities (P),  

¾ The degree of hazard (Z), determining the magnitude of the effects that arise 

after a defect occurrence during the production process and the use of the 

product,  

¾ Traceability (T), determining the possibility of detecting a potential defect. 

RPN values of potential failure modes in the study were calculated using indicator 

ratings, as shown in Figure 2.3. These values should be determined by people 

experienced in the usage and maintenance of systems. Hazard level, occurrence 

probability, and detection values were determined for the belt conveyor to obtain 

individual RPN scores (Equation 1).  
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Figure 2.3 Estimated Risk Values (Wolfgang and Klaus, 2007) 

 

RPN	 = 	 (Z) × (P) × (T) (1) 

 

Palei et al. (2020) employed another method for assessing reliability. Failures of a 

shovel and its sub-systems were monitored in the study. First, serial correlation and 

trend tests were utilized to prepare the data for analysis. It ensured that all the input 

data for the next step had no anomaly behavior.  Then, Kolmogorov-Smirnov (K-S) 

Test was conducted to find the best-fit distribution for the dataset. Finally,  an 

isograph reliability workbench was utilized to determine the reliability of each 

machine. 

On the other hand, Fault Tree Analysis (FTA) uses multiple fault trees to identify 

internal and external causes contributing to system or sub-system failure 

probabilities (Bertsche, 2008). These causes can lead to a pre-defined product failure 

state (mostly a fault state) in case their occurrences are individually or in 

combination with other causes. In this way, FTA defines the system behavior 

regarding certain events (and/or faults). This method was first developed in Bell 

Laboratories in 1962 by the motivation of the USA Air Force and then used by 

Boeing Company. The commercial aerospace sector started to use fault trees in the 

late 1960s as a standard procedure, and then the nuclear industry embedded the 

method into its risk assessment in the 1970s. Currently, FTA is one of the most 

common systems risk assessment techniques, especially for critical technology 

sectors such as aerospace, nuclear, automotive, communication, and robotics. FTA 

allows qualitative and quantitative assessments in product design and 

implementation phases.  
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Fault trees require the identification of dependencies in a system using different 

symbols in a systematical structure (Figure 2.4). On this basis, various gates are 

integrated into a network illustration and express the configuration of components in 

a system or sub-system. Transfer input and output symbols can be used to allow 

transferring between the fault trees. Standard inputs define the system elements to 

be analyzed. In a fault tree, inputs are combined using gates that determine different 

functional dependencies in the system boundary. Here, AND gate refers to series 

dependency where system or subsystem failure can occur if all the components 

covered are failed simultaneously. OR gate shows parallel dependency where any 

sub-event failure can damage system or subsystem reliability. NOT symbol develops 

a negation dependency between multiple events. These symbols can be examined in 

Figure 2.4. 

Constructing a fault tree requires a preliminary evaluation of dependencies between 

components in a system. At this point, interactions between components and the 

correlation between component-failure and system reliability should be presented in 

a deductive structure. After developing system configuration with component 

dependencies, each component should be branched into its potential failure modes. 

These failure modes are generally quantified using proper distribution functions, and 

the resultant failure mode behavior determines component reliability (Figure 2.5).   

  
Figure 2.4 Fault Tree Analysis Symbols (Lynch, 2021)  
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Figure 2.5 Procedure and Structure of a Fault Tree 

 

Another reliability assessment method is Markov chains using several states that can 

be experienced in a system and the transitions between these states. Markov chain is 

a stochastic process holding random components (Stapelberg, 2009). The random 

variable used in the process, X(t), denotes the state of the process at time t. All 

possible states in their collection are called the state space and are noted by X. The 

state space X is either finite or countable infinite. However, in most reliability 

applications, the state space will be finite. These states will resemble the real states 

of a system. X is taken to be {0, 1, 2, . . ., r), unless it is stated otherwise, and such 

that X contains r + 1 different state. The time may be discrete, taking values in (0, 1, 

2, . . .}, or continuous. A continuous-time Markov chain is also called a Markov 

process. When the time is discrete, the time is presented by n and the discrete-time 

Markov chain by (Xn, n = 0, 1, 2, ...). Illustration of the transitions in a Markov chain 

can be viewed in Figure 2.6. 
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Figure 2.6 Markov Chain Transitions (Tarek et al., 2018) 

2.2.3 Reliability and Maintenance 

Maintenance policies should consider multiple physical assets to be maintained 

differently depending on their design complexities and maintenance requirements. 

Maintenance activities can be divided into two main groups (Ben-Daya et al., 2016): 

Preventive maintenance (PM) and corrective maintenance (CM). Equipment failures 

and resultant downtimes experienced in a production area affect not only the 

occupational health and safety aspects but also the productivity and availability of 

operating systems and maintenance costs. Various alternative approaches have 

recently been developed to improve maintenance activities and equipment 

performance. One of these approaches is called reliability-centered maintenance 

(RCM). 

Previously, maintenance was performed correctively when a machine component 

failed. Later on, for the improvement of system availability, equipment life, and 

profits, maintenance policies started to include preventive measures in addition to 

corrective maintenance tasks in the late 1960s. With the growth of mechanization 

and automation, additional concerns were raised alongside safety and environmental 
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issues. Therefore, reliability was started to be integrated into maintenance policies 

frequently to ensure system safety and operations most economically and efficiently. 

Kobbacy & Murthy (2008) proclaimed that reliability-centered maintenance was 

first developed for the aircraft industry as a ‘systematic approach for identifying 

effective and efficient preventive maintenance tasks for items in accordance with a 

specific set of procedures and for establishing intervals between maintenance tasks.’ 

and later has been adapted to numerous other industries. RCM allows determining 

the optimal type of preventative maintenance in a structured and traceable way. The 

main steps of RCM are given as follows: 

i. Preparation 

ii. System Selection and Definition 

iii. Functional Failure Analysis (FFA) 

iv. Critical Item Selection 

v. Data Collection and Analysis 

vi. Failure Mode, Effects and Criticality Analysis 

vii. Selection of Maintenance Actions 

viii. Determination of Maintenance Intervals 

ix. Preventive Maintenance-Comparison Analysis 

x. Treatment of Non-critical Items 

xi. Implementation 

The idea that combines reliability and maintenance concepts is RCM or reliability-

centered maintenance. RCM was first developed in the 1960s for the jumbo jet 

Boeing 747 since it required almost three times of maintenance compared to older 

generation planes, and the maintenance needed to be performed attentively. Then, 

this method was adapted by US Military for its aircraft. In the following years, it 
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started to be used in the nuclear energy field, where high safety standards should be 

ensured. Finally, some other large-scale production industries included RCM 

applications in their maintenance policies. RCM policies effectively define 

preventive and corrective maintenance work packages regarding system elements' 

stochastic deterioration and failure behaviors. 

Preventive maintenance aims to preserve the equipment by asking, "what can be 

done before failure?" Consider two identical air-operated valves in a nuclear power 

plant as a sample case. One regulates the water flow to the main heat exchangers that 

provide the proper balance of steam flow to a turbine-generator set. On the other 

hand, the other regulates service water flow to the plant facilities (e.g., cafeteria, 

lavatories, shops, etc.). Preserving the equipment type of maintenance would mean 

that both valves receive the same PM actions, such that this approach cannot be 

acceptable. Failure in the heat exchanger can result in catastrophic conditions, while 

the other can only cause an operationally unimportant condition. Therefore, 

treatment and recovery of failure modes should be motivated by operational effect 

and occurrence rates of failure modes that can be achieved by s RCM approach. 

RCM has four main distinguishing features that differ from regular maintenance 

practices. The first and most important one is to preserve the functions of critical 

system elements before exposure to crucial failures so that overall system output and 

safety can be ensured. Therefore, interruptions in system element functions and their 

effects on overall system output should be addressed in detail by defining operational 

dependencies and prioritizing maintenance activities for each system element. The 

second objective of RCM is to prevent the loss of function or functional failure by 

taking required preventive maintenance actions. The third objective is systematically 

allocating budgets and resources according to priority rankings. The final objective 

is to ensure that each potential PM task is applicable and effective. An applicable 

task means that if it is performed, regardless of cost, it will accomplish one of the 

followings: Preventing or mitigating failures, detecting the beginning of failure, or 

noticing a hidden loss. Applicability of tasks should be evaluated in terms of their 

effectiveness in financial benefits and practicality. 
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2.3 Reliability and Maintenance Studies in Mining 

Maintenance procedures should enhance the systems' functionality and 

dependability. However, there can be high-cost flow associated with dependability 

improvement and financial and technical constraints. As a result, there is a trade-off 

between system deterioration and the financial effects of maintenance actions. 

According to the unit value of production and the system's function in production, a 

maintenance strategy should be created to maintain the system's reliability above the 

desired level. Over-rated preventive work packages may result in higher system 

unavailability due to redundant preventive maintenance downtimes and additional 

investment expenses. In this context, some of the recent literature studies related to 

mining equipment reliability and maintenance are discussed in this chapter. 

Barabady (2005) conducted a reliability analysis for the crushing plants to develop 

maintenance implementation intervals. The study decomposed the plant into 

subsystems, and maintenance records were classified accordingly. Then, these 

records were used to determine the time between failures (TBF) and time to repair 

(TTR) distribution functions. Finally, using the obtained results, maintenance 

intervals could be adjusted accordingly to get the desired reliability of the crusher 

systems, starting with 75% reliability to be later adapted to achieve 90% reliability. 

In addition, Vayenas and Wu (2009) concentrated on maintenance analysis of load-

haul-dump (LHD) vehicles used frequently in underground mines. The methodology 

used in this study was probability distribution modeling techniques. It was assumed 

that there were no failures during a shift if there were no data and that the machinery's 

stand-by times were registered separately. It was concluded that preventative 

maintenance takes a long time and does not contribute to availability improvement. 

Moreover, Bugaric & Tanasijevic (2012) analyzed the effect of rubber belt failures 

on production costs by fitting distributions of gradual and sudden failures to predict 

the equipment will break. On the other hand, Hoseinie et al. (2012) studied the 

reliability of cable drum shearers using the power law process model to achieve high 

productivity with smooth machinery function. The study model shows the failure 
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numbers grow cumulatively, and after modifying the preventative maintenance 

intervals, the drum shearer performs appropriately for a longer time.  

Additionally, Palei et al. (2012) proposed a preventative maintenance strategy for a 

dragline used in the opencast coal mining site. Failure mode effects analysis (FMEA) 

with real operational data was used to analyze the failure rates of components. The 

failure time behaviors of the dragline components were expressed by the Weibull 

distribution. This study showed that dragline downtime could be reduced by 231 

hours a year by integrating a more effective maintenance policy. Gustafson et al. 

(2013) analyzed the reliability of LHDs using fault tree analysis. Semi-automatic and 

manual types of equipment were evaluated, decomposing LHDs into subsystems. 

The environment that benefits from using automation was detected to be the main 

issue that causes the failures in LHDs. This analysis of LHD automation in an 

underground mine revealed the importance of preventative maintenance to keep idle 

times as low as possible. Demirel et al. (2013) used trend tests and fault tree analysis 

to investigate the system reliability of draglines. Morad et al. (2014) investigated an 

equipment fleet employed in a copper mine and tried to improve fleet productivity 

using reliability-based maintenance approaches such as Markov chain, GRP, PLP, 

and RP. Monitoring the wheels as the most critical components and developing a 

more effective spare part inventory policy were observed to improve productivity 

with decreased operating costs. 

Moreover, Barberá et al. (2014) conducted a case study in the mining industry with 

a graphical analysis for maintenance management (GAMM) for two slurry pumps 

having high failure rates. GAMM method's graphics have shown and characterized 

these slurry pumps' issues. The method improved maintenance practices and 

strategies by decreasing peak loads and malpractice. Kovacevic et al. (2016) 

provided a two-step method for analyzing the aspects and factors influencing human 

errors during the maintenance activity of mining machines. The group fuzzy analytic 

hierarchy process and cause-effect analysis are both included in the developed 

methodology. The analysis's findings indicated that the most critical factors are work 

organization and instructions, individual training and characteristics, work 
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experience, and equipment specifications. Gölbaşı and Demirel (2017) developed a 

simulation algorithm to optimize inspection intervals. Typically, these inspections 

are performed regularly to detect hidden or apparent failures and to preventively 

maintain components with approaching failure. The model can introduce multiple 

series-parallel systems with random lifetime and repair time behaviors.  The 

developed algorithm was applied for two draglines decomposed into subsystems and 

different failure modes. Besides, Jonsson et al. (2018) examined digitalized 

condition-based maintenance data for machines operating in an iron ore mine. Two 

complementary work practices, which are digital representation and digital 

mediation, were investigated in the study. Pandey et al. (2018) combined various 

methods for evaluating critical sub-systems of a dragline and presented a critical 

review of the planned maintenance program. Balaraju et al. (2020) used RBD 

(reliability block diagram) method to evaluate the performance of load haul dumper 

machinery (LHD) used in underground mining operations to preserve equipment life. 

An LHD can be exposed to tough working environments resulting in unexpected 

maintenance breakdowns. This study examined the expected failure modes of the 

LHDs using Kolmogorov–Smirnov (K-S) best-fit distribution analysis. Then the 

subsystem and system reliabilities were evaluated. In addition, Burduk et al. (2020) 

used FMEA analysis to assess the reliability of a belt conveyor system used in a 

copper mine.  

Many studies were performed about the reliability concept in the mining industry, 

where its cash flow depends heavily on machines operating in challenging working 

environments. Any delays caused by breakdowns can lead to an observable amount 

of production loss. Therefore, reliability and maintenance aspects must be examined 

jointly. In some cases, risk factors, including operational history, equipment design, 

available conditions of the work environment, and material qualities, can also be 

considered for a broad evaluation (Agrawal, 2019). At this point, reliability analysis 

is vital to evaluate machine performance and the frequency of failures. This analysis 

can better plan maintenance activities on a priority basis so that the machines can be 

kept in the operational state for longer (Agrawal, 2019). Previous annual reports 
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showed that maintenance-related expenses could be about 40 to 50% of all 

equipment operating costs in mining. This also equates to 20 to 35% of the total 

operating cost in a mine (Unger and Conway, 1994). Therefore, alternative 

maintenance policies should be investigated attentively regarding their positive and 

negative contributions to operating costs and production losses. 
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CHAPTER 3  
 

3 PREPROCESSING OF THE DATA 

3.1 Introduction 

The dataset utilized in the current study requires a preprocessing stage for evaluating 

subsystems and components within the system and determining the time-dependent 

behaviors of the individual datasets. Accordingly, Section 3.2 will mention how the 

system is decomposed into its sub-elements considering functionally similar 

components. On the other hand, data preprocessing stages and parametric 

estimations of lifetime and downtime functions will be discussed in Sections 3.3 and 

3.4. 

3.2 System Decomposition 

In the current study, reliability (lifetime) and maintainability (downtime) 

assessments of system components and iterative maintenance policy models were 

accomplished using maintenance records of mining trucks employed in an open pit 

coal mine in Türkiye. The maintenance records mainly comprise the start and finish 

dates and hours of failure modes of seven different Komatsu 785-type trucks with 

five different subsystems each and the short descriptions of failure modes in an 

observation period between 2015 and 2019. As illustrated in Figure 3.1, a mining 

truck can be decomposed into five main subsystems: Hydraulics, Body and Frame, 

Electrical, Drivetrain, and Tires. At this point, the Body and Frame subsystem covers 

the chassis holding engine, drivetrain, suspension, wheels, damper, and driver’s cab. 

On the other hand, the Electrical subsystem consists of all the required electrical 

components, including battery, lights, alternator, and transmission cables. In 

addition, Engine and Gearbox are classified under the Drivetrain subsystem. The 

hydraulics subsystem covers hydraulic components mainly related to steering, 

braking, damper lifting, and other systems where hydraulic fluids are used. Lastly, 
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the Tire subsystem includes four rear tires and two front tires for each truck, 

including punctures. Detailed branching of subsystems according to failure-prone 

components is given in Figure 3.2. 

 

Figure 3.1  Komatsu HD 785 Sub-system Schematic View 

 

 

Figure 3.2 Sub-Systems and Failure-Prone Components of a Truck 
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Pareto charts of failure distributions in terms of failure numbers and downtime 

durations are shown in Figure 3.3 for Truck ID321. Among these seven trucks, Truck 

ID 323 is seen to be the truck experiencing the highest failure-based downtime, 

where Truck ID 327 shows the least total downtime at the observation time. In 

addition, there were 611 failures in total during the 4-years of observation. 

 

 

Figure 3.3 Failure Number and Duration Distributions of the Truck #321 Subsystems  

other
body and frame

drivetrain
electrical

tyres
hydraulics

other 

M
ai

nt
en

an
ce

 D
ur

at
io

n 
(H

ou
r)

0.00

50.00

100.00

150.00

200.00

250.00

300.00

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Failure Duration Distribution Truck ID321

0

10

20

30

40

50

60

body and fra
me

drivetrain
electrical

hydraulics
other

other
planned

tyres
(blank)

M
ai

nt
en

an
ce

 N
um

be
rs

Failure Number Distribution Truck ID321



 

 
24 

Once the system was decomposed into subsystems, considering expert opinions, 

maintenance records, and equipment catalogs, then the maintenance records were 

allocated into related subsystems to determine their reliability and maintainability 

functions. On this basis, reliability functions will characterize surviving, i.e. 

operating, behaviors of subsystems, while maintainability functions will determine 

the time-to-repair behaviors of each subsystem in a maintenance condition. 

However, raw datasets require a preprocessing stage to understand their 

autocorrelation and time-dependency attitudes since the parametric values of 

reliability and maintainability behaviors can be determined differently in the case of 

time-dependency. Here, time-dependency means that related subsystems or 

components can be in a wear-out period that differs from their useful life period. 

Then, it becomes challenging to forecast upcoming failures, and distribution-fitting 

cannot be used in those cases since data behavior is highly variable in time. On this 

basis, regression equations holding time as an independent of the equation may be 

required to express the future subsystem or component failure events.   

3.3 Data Preprocessing 

This subsection discussed data preprocessing stages, including outlier detection, data 

dependency testing, and trend testing for individual truck subsystems' individual 

datasets using Minitab and ReliaSoft Weibull++ software. 

3.3.1 Outlier Detection 

Outlier is extremely high or low-value data in a data population that can disturb 

common data behavior. An outlier can be caused by measurement errors or rarely-

observed but accurately measured high/low values. Including outliers in the analyses 

leads to damage in the parametric estimation of expected data characterization. 

Therefore, they should be detected and eliminated before the analysis. In the current 

study, maintenance downtime (time-to-repair, TTR) and lifetime (time between 

failures, TBF) datasets of subsystems for each truck were tested for outlier detection 
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using  Grubbs' test in Minitab. In a random sample taken from a population, an outlier 

is an observation that is abnormally distant from other values. In a sense, the choice 

of what constitutes abnormality is left up to the analyst (or a consensus process) in 

accordance with this definition (NIST/SEMATECH, 2012). Furthermore, according 

to Aslam (2020) the test checks the null hypothesis that a speculative value is an 

outlier compared to the other hypothesis that the value is not an outlier. Test’s value 

is compared with the tabulated value at a fixed value of the level of significance. The 

null hypothesis is that the speculated value is an outlier is accepted if the Grubbs’ 

value is smaller than the tabulated value. A sample illustration of the test for the TTR 

dataset of the Body and Frame subsystem of Truck ID321 is given in Figure 3.4.  

It can be seen that, compared to majority of the data, the value of 1,291 falls away. 

Therefore, 1,291 can be defined as an outlier according to Grubbs test. Because, it 

doesn’t behave as expected. If there were more data towards 1000s, it could have 

been seen as normal.  

 

Figure 3.4 Outlier Plot for Truck#321 Body and Frame Sub-System’s TTR 
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3.3.2 Data Dependency 

After removing the outlier values, the resultant sets of TBF and TTR values were 

tested for data dependency. Data dependency tests evaluate the correlation between 

the sequential time-ordered values and determine if there is a biased effect between 

the values. This type of correlation is also called autocorrelation and can be discussed 

using the Pearson correlation test with lag1, lag2, and lag3 intervals. Lag1 tests 

determine the potential correlation between n order and (n+1) order data, Lag2 

controls the correlation between n order and (n+2) order data, and Lag3 checks the 

correlation between n order and (n+3) order data. The Pearson test gives a coefficient 

called r-value, which refers to the correlation rate. For the absolute value of r higher 

than 0.7, there is a strong indication of autocorrelation for the tested lag-interval. 

Otherwise, the data is stated to be independent. In addition, a positive r value 

indicates a reverse correlation, while a positive r value points to a direct correlation 

between sequential data. Furthermore, Turney (2022) suggests the Pearson 

correlation coefficient (r) can be used to measure how close the observations are to 

a line of best fit. Extreme values of the correlation coefficient can be observed in 

Figure 3.5. 

 

Figure 3.5 Visualization of Pearson Correlation Coefficient (Turney, 2022) 
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The Pearson test performed in Minitab for the TTR dataset of the Body and Frame 

subsystem of Truck ID321 is shown in Figure 3.6. The |r| value lower than 0.7 

indicates that the dataset does not experience autocorrelation behavior. The test was 

applied for each TBF and TTR dataset of individual trucks. There is not any observed 

autocorrelation behavior for the Lag1 and Lag2 sequences of these datasets. 

 

Figure 3.6 Pearson Correlation Test of Truck ID321 TTR Values of Body and Frame 

Sub-System Lag1&Lag2 

3.3.3 Data Trend Tests 

After eliminating outlier values and verifying that the TTR and TBF datasets are not 

with an autocorrelation behavior, these datasets were also tested for their potential 

time dependencies. Any equipment subsystem or component is expected to 

experience three different failure rate phases during its operation period. These are 

burn-in, useful life, and wear-out periods, as discussed earlier in Section 2. Burn-in 

period refers to the early phase of equipment utilization where the failure rate can be 

high initially but decrease over time due to accurate adaptation of equipment into 

operation. Then, the useful life of the equipment is observed, and equipment 

components are failed with almost expected lifetimes. Following a useful lifetime 
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period, equipment components are exposed to increasing failure rates in short 

intervals due to the deterioration of system components. In that case, the 

predictability of failure occurrences decreases with increasing failure frequency. 

Suppose the wear-out period is not interrupted with a modified maintenance policy. 

In that case, the equipment is expected to be evaluated as salvage since equipment 

availability drops drastically so that the resultant production loss will require renewal 

or substation of equipment with a new one.  

In this section, data trend tests will detect any subsystem with an increasing failure 

rate (wear-out) or a stable failure rate (useful life). If subsystem TBF/TTR values do 

not follow any trend in time, then it means that useful life is active for the subsystem 

and the related dataset is out of time dependency. This type of dataset can be fitted 

in distributions. Otherwise, if data trend in time is observed, it means that data cannot 

be characterized using best-fit distributions, and time-dependent functions should be 

determined. Qualitative and quantitative trend tests can investigate data trend 

behavior. 

The qualitative trend test uses graphical illustrations and subjective interpretation 

where the cumulative time between failure values is drawn, as shown in Figure 3.7. 

A straight-line behavior of the plot dots refers to a stable behavior without a trend. 

At this point, Figure 3.7 points to some potential data trend behavior. 

On the other hand, Quantitative Trend Tests use mathematical expressions to 

estimate the data trend over time. Four quantitative hypothesis testing methods were 

utilized for this study, as listed below. 

• Crow-AMSAA Test 

• Laplace Test 

• CPNT Test 

• Lewis-Robinson Test 
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Figure 3.7 Cumulative TTR Plot and Number of Failure Graph of Truck ID321 Body 

and Frame Subsystem 
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The Crow-AMSAA model is a hypothesis testing method where the null hypothesis 

(Ho) indicates that time-ordered data follow the homogeneous Poisson process point 

to non-trend behavior. If the null hypothesis is rejected, the alternative hypothesis 

(H1) defends that data follows the non-homogenous Poisson process with a potential 

data trend. If the null hypothesis is accepted, then the dataset can be fitted into the 

best-fit distribution. The Crow-AMSAA model basically investigates reliability 

growth within a particular phase (Weibull, 2005).  

Ho: HPP 

H1: NHPP 

β, =
-

∑ ln 12!2"
3!#$

"%$
 

Reject	Ho	if:	

2-/β,<>&!,$#(/2&  

2-/β,>>&!,(/2&  

(3.1) 

The test parameter, β, , is determined using the number of failures (-) and cumulative 

time between failures up to ith failure (2"). Data trend is rejected if  	

2-/β,<>&!,$#(/2&  or 2-/β,>>&!,(/2&  where >& and ? are the chi-squared distribution 

score and confidence interval, respectively. 

On the other hand, the Laplace test uses the hypothesis testing criteria given in 

Equation 3.2. If, for the predetermined @* value, @* > B(/& or @* < −B(/& where 

B(/& is the standardized normal distribution score, then the null hypothesis is 

rejected, and the data is expected to be with a trending behavior (Wang and Coit, 

2005). 

Ho: HPP 

H1: NHPP 

 

@* =
∑ 2" − (- − 1)

2!
2

!#$
"%$

2!F
- − 1
12

 

Reject	Ho	if:	

@* > B(/& 

@* < −B(/& 

(3.2) 

The Pairwise Comparisons or PCNT decided that the data is following a trend 

behavior if  @* > B(/& or @* < −B(/&where @ is the number of conditions where 

G+ > G" for H > I (Wang and Coit, 2005). 
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Ho: Renewal 

H1: Not Renewal 

@, =
@ − -(- − 1)/4

F(2- + 5)(- − 1)-72

 

Reject	Ho	if:	

@* > B(/& 

@* < −B(/& 

(3.3) 

The Lewis-Robinson test is a modification of the Laplace test where the null 

hypothesis validates the Renewal process. The method uses the coefficient of 

variance,	OP[G], differently (Gustin, 2011). 

Ho: Renewal 

H1: Not 

Renewal 

@*-

=
@*

OP[G] 

OP[G]

= 	SPTU[G]/V̄ 

Reject	Ho	if:	

@* > B(/& 

@* < −B(/& 

 

(3.4) 

Hypothesis test results of the TBF and TTR datasets for Truck ID321 can be 

observed in Table 3.1 and Table 3.2. The test results for the other trucks can be 

examined in Appendix A. 

 

Table 3.1 Trend Test Results of the TTR Datasets of Truck ID321 Subsystems 

Test 
Name 

Test 
Parameters 

Truck Subsystems 

Electrical Drivetrain Hydraulics Tyre Body 

Crow 

AMSAA 

2"/$%  10.1 74.4 38.5 28.3 43.0 
&!",$%&/!!  3.3 32.4 19.8 6.9 15.3 
&!",&/!!  20.5 71.4 52.0 28.9 44.5 

 Accept Ho Reject Ho Accept Ho Accept Ho Accept Ho 

Laplace 
'( -0.87 -2.60 0.56 -2.13 -1.16 
(&/! 1.95 1.95 1.95 1.95 1.95 

 Accept Ho Reject Ho Accept Ho Reject Ho Accept Ho 

PCNT 
') 0.00 0.65 0.58 1.48 1.15 
(&/! 1.95 1.95 1.95 1.95 1.95 

 Accept Ho Accept Ho Accept Ho Accept Ho Accept Ho 

Lewis 

Robinson 

'(* -0.71 -1.67 0.32 -1.89 -0.94 
(&/! 1.95 1.95 1.95 1.95 1.95 

 Accept Ho Accept Ho Accept Ho Accept Ho Accept Ho 
DECISION Non-trend Trend Non-trend Non-trend Non-trend 
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Table 3.2 Trend Test Results of the TBF Datasets of Truck ID321 Subsystems 

Test 
Name 

Test 
Parameters 

Truck Subsystems 

Electrical Drivetrain Hydraulics Tyre Body 

Crow 

AMSAA 

2"/$%  15.6 71.2 35.9 22.1 37.4 
&!",$%&/!!  9.6 38.8 27.6 12.4 16.8 
&!",&/!!  34.2 80.9 64.2 39.4 47.0 

 Accept Ho Accept Ho Accept Ho Accept Ho Accept Ho 

Laplace 
'( 1.13 -1.00 0.14 0.49 -1.37 
(&/! 1.95 1.95 1.95 1.95 1.95 

 Accept Ho Accept Ho Accept Ho Accept Ho Accept Ho 

PCNT 
') -0.80 0.98 -0.99 -0.41 1.53 
(&/! 1.95 1.95 1.95 1.95 1.95 

 Accept Ho Accept Ho Accept Ho Accept Ho Accept Ho 

Lewis 

Robinson 

'(* 0.92 -1.22 0.13 0.49 -1.38 
(&/! 1.95 1.95 1.95 1.95 1.95 

 Accept Ho Accept Ho Accept Ho Accept Ho Accept Ho 

DECISION Non-trend Non-trend Non-trend Non-trend Non-trend 

 

The hypothesis testing results show that some truck subsystems' TBF or TTR 

datasets follow trend behavior. As mentioned earlier, any dataset with trend behavior 

cannot be evaluated with bet-fit distributions since both stable and wear-out data may 

be included in the same dataset without homogeneity. Therefore, these datasets 

should be analyzed using Renewal Function with an imperfect maintenance model.  

Table 3.3 lists the truck subsystems having trend behavior in their datasets. 

 

Table 3.3 The Truck Subsystems with Data Trend Behavior 

Truck ID Sub-system Failed Tests 
322 Electrical TBF&TTR 
323 Drivetrain TBF 
323 Hydraulics TBF 
324 Tyres TBF&TTR 
325 Body TBF&TTR  
326 Hydraulics TBF 
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3.4 Estimation of Reliability (TBF) and Maintainability (TTR) Functions 

Each truck subsystem's TTR and TBF datasets are evaluated using either best-fit 

distributions or imperfect maintenance concepts, depending on data trend behavior. 

Imperfect maintenance models allow determining parametric values of data 

characterization with a restoration value between 0 and 1. The value of 0 means that 

any maintenance action returns the failed component just back to the before-failure 

condition called as bad as old. This condition is also called minimal repair. Here, the 

failed component is restored, but the trend in failure rate is not changed. The 

restoration factor of 1 refers to perfect maintenance, also called as good as new. A 

dataset with trend behavior is expected to have a restoration factor 0 ≤ Z[ < 1. This 

factor will not equal 1 since RF of 1 indicates that there is not any trend since the 

component is restored to an as good as new condition that eliminates accumulation 

in failure rate. This restoration factor can be determined in two different assumptions 

on whether the maintenance is eliminating the cumulative hazard from the very first 

hours of the observation period or the hazard just from the previous maintenance. 

Details of the imperfect maintenance concept can be examined in Mettas and Zhao 

(2005). 

Parametric values of the obtained TBF and TTR functions will be given and 

discussed in Section 4.3. 
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CHAPTER 4  

 

4 FAULT TREE ANALYSIS OF A TRUCK FLEET FOR DIFFERENT 

MAINTENANCE SCENARIOS 

4.1 Introduction  

This chapter focuses on the fault tree analysis of a truck fleet operated in an open pit 

coal mine. The analysis intends to reveal system reliability variations of individual 

trucks and truck fleet according to different maintenance scenarios. Accordingly, 

Section 4.2 will discuss the fault tree construction for the mining truck. Section 4.3 

will mention the maintenance scenarios that will be considered in the analyses. 

Section 4.4 will perform a comparative investigation between the scenarios 

according to their contributions to the truck fleet's uptime and downtime profiles. 

4.2 Construction of a Fault Tree Diagram for Mining Truck Fleet 

Fault tree analysis is a common method used for reliability analysis of different 

systems, including transportation devices, manufacturing machinery, and 

infrastructural items. Fault trees are constructed by using various gates that refer to 

structural and/or functional dependencies in a system. The most frequently-used 

gates are AND gate, OR gate, standby gate, and Voting gate. A fault tree analysis 

estimates system failure probability (reverse of reliability) considering the reliability 

behaviors of its subsystems and components and their top-to-bottom dependencies 

described by the related gates. Therefore, the reliability is determined starting from 

the lowermost event to the uppermost event.  

If any two or more sub-events are combined with a series dependency under an event, 

then these events are combined with AND gate. It means that all the sub-events 

should fail for the failure of the main event. On the other hand, if any failure of sub-

events is enough for the failure of the main event, OR gate is used to define the 
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dependency.  On the other hand, the voting gate states that at least k out of n sub-

events should fail for the failure of the main event. For instance, a fault tree having 

an event with 3 out of 4 voting gate points to that there are four sub-events; if at least 

three of them fail, then the event will fail. Otherwise, the event will survive even 

though there are some failed sub-events if the number of failed sub-events is less 

than three. Last, stand-by configurations imply that some inactive events are being 

activated in case of failure of similar events.  There are also some special gates such 

as load sharing, Priority AND gate, and XOR gate that can be used in complex 

interactions in a system. Here, the load sharing gate is used in cases where surviving 

probability of an event is changing dynamically with the failure of its sub-events. On 

the other hand, the XOR gate states that exactly one sub-event should fail for the 

failure of the main event. It is similar to the OR gate, but the OR gate allows the 

failure of more than one sub-event. Last, the Priority AND gate can be used for the 

events where sub-events should fail in a specific order to prevent the survival of the 

main event. 

The fault tree diagram for the truck fleet was created using ReliaSoft BlockSim 7 

software. The main intention in this analysis is to reveal the expected downtime and 

uptime profiles of trucks using dynamic simulation of fault tree diagrams. Failure 

records of a truck fleet operated in a coal mine, machinery catalogs, and expert 

opinions were regarded to develop the fault tree diagram. As discussed earlier in 

Section 3.2, a truck is detected to be decomposed into the following subsystems: 

i. Body and Frame: This part is the largest section of the truck. The damper, main 

construction (frame) creating a space for engines and all other mechanical and 

electrical items, and shock observers are detected to be prone to failures 

according to the maintenance records. Even though many different items are 

covered in this subsystem, this subsystem could not be decomposed into its 

lowermost components due to the lack of enough explanations in the records. 

Therefore, related failure records were considered together for the subsystem 

without data classification of components. This condition is also valid for the 
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other subsystems. Therefore, in the fault tree analysis, subsystems will refer to 

the lowermost events. 

ii. Electrical: Many electrical components such as starters, cables, batteries, 

alternators, lights, and other electrical items are covered in this subsystem. Due 

to insufficient explanations in the records and enough failure data to be 

analyzed, all related electrical failures were taken together under the electrical 

subsystem. 

iii. Drivetrain: Engine body, gearbox sub-components, fuel injection items, intake 

and exhaust air system items, lubrication units, and cooling units were included 

in this subsystem. As in the other subsystems, this subsystem could not be 

decomposed into its small components due to inefficient descriptions in the 

maintenance records. 

iv. Hydraulics: Steering, braking, and other related items were covered in this 

subsystem. This subsystem was evaluated as a whole. 

v. Tires: Tires and wheels are the components of this subsystem, and it is taken 

without any component breakdown.     

An event block represents each sub-system, and they were configured in a series 

dependent on AND gate in each truck. Reliability (time between failures, TBF) and 

maintainability (time to repair, TTR) functions of each subsystem are transferred 

from ReliaSoft Weibull 7 software to ReliaSoft BlockSim 7. At this point, ReliaSoft 

Weibull 7 software is used to determine best-fit distribution functions for non-trend 

datasets and imperfect maintenance functions for trend datasets, as discussed in 

detail in Section 3.3.  

In addition, six trucks were included in the analysis. Therefore, a total of 30 

subsystems, seven subsystems for each truck, were considered in the reliability 

analysis of the truck fleet. Here, the fleet reliability was expressed by the voting gate. 

It means that production can be sustained with k out of n number of trucks in the 

fleet at least, where n is the total truck number (Figure 4.1). 
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Figure 4.1 Fault Tree Diagram of the Truck Fleet 

4.3 Evaluation of the Input Datasets 

Fault tree analysis of the truck fleet required pre-determination of the following 

input parameters: 

• Reliability functions of the subsystems (f(x)./): Surviving characterization 

for each subsystem (i) of truck (j) can be performed depending on if the time 

between failures (TBF./) dataset of the related subsystem follows any 

ascending or descending trend in time, as discussed in Section 3.3. 

Accordingly, if the trend behavior of a time series dataset is proved 

statistically, then the function parameters of this dataset can be determined 

using the general renewal function with an imperfect maintenance concept. 

This function allows estimating 2-parameter Weibull Distribution parameters 

with a restoration factor between 0.0 and 1.0, which refers to minimal and 

perfect maintenance. If any time-based trend is not detected in a dataset, then 

the function parameters can be determined by distribution fitting. Once 

maintenance records were decomposed into a subsystem of each truck, these 
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individual datasets were analyzed using Reliasoft Weibull software. The 

resultant  f(x)./ parameters are tabulated in Table 4.1. 

• Maintainability functions of the subsystems (g(x)./): Time to repair (TTR./) 

values of subsystem (i) of truck (j) were analyzed in Reliasoft Weibull 7 

software following a similar procedure with f(x)./ (Table 4.2). These 

functions will allow assigning random maintenance durations for the 

subsystems. Similar to f(x)./, any time-dependent trend in the maintenance 

durations is regarded when determining the parametric values of g(x)./. A 

statistically-proved increase in TTR values in time may point to increased 

maintenance time for similar failure modes due to exposure to more serious 

failure because of subsystem deterioration.  

As observed from Table 4.1 and Table 4.2, the functions are defined in terms of 

3-parameter Weibull distribution, 2-parameter Weibull distribution, General 

Renewal process, and 2-parameter lognormal distribution, normal distribution, 

or 2-parameter exponential distribution. Here, the General Renewal process is 

applied to the time-dependent trend behavior subsystems. Descriptive parameters 

of this process can be identified with Weibull distribution parameters. For both 

Weibull distribution and the General Renewal process, the Eta parameter, also 

called shape parameter `, refers to behavior of failure rate. The functions with  

` < 1 exhibit a failure rate decreasing with time. It is understood that the related 

subsystems have infant mortality failure characteristics that are also observed in 

the very early stages of using these subsystems. Subsystems generally with 

complex components may show this behavior due to over-maintenance free from 

deterioration. If ` ≅ 1, then the function exhibits constant and very predictable 

failure rate (useful life). The corresponding subsystems have expected failure 

frequency without any over or under-maintenance activities. In addition, when 

the ` closes to 1, then the Weibull distribution is reduced to the exponential 

distribution. The subsystems with ` > 1, they are prone to have a deterioration.  
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Table 4.1 Reliability (TBF) Functions of Truck Subsystems 

 Truck ID 321 Truck ID 322 Truck ID 323 Truck ID 324 Truck ID 325 Truck ID 326 

Electrical 

Weibull-3P General Renewal Process Weibull-2P Weibull-3P Normal-2P Weibull-3P 
Beta 0.78 Beta(W) 1.78 Beta 1.13 Beta 0.87 Mean 1102.83 Beta 1.07 

Eta 1429.75 Eta(W) 5578.94 Eta 796.21 Eta 1059.52 Std 963.00 Eta 1320.23 

Gamma -24.58 RF 0   Gamma 7.15   Gamma -40.25 

Drivetrain 

Weibull-3P Weibull-2P General Renewal Process Weibull-2P Weibull-3P Exponential-2P 
Beta 0.97 Beta 0.66 Beta(W) 0.43 Beta 0.72 Beta 1.28 Lambda 5.02E-04 

Eta 2407.78 Eta 950.62 Eta(W) 880.65 Eta 1296.34 Eta 1863.98 Gamma -30.60 

Gamma -72.42   RF 0.997   Gamma -239.66   

Hydraulics 

Weibull-3P Weibull-3P General Renewal Process Weibull-3P Weibull-3P General Renewal Process 
Beta 0.80 Beta 1.15 Beta(W) 1.62 Beta 0.79 Beta 0.63 Beta(W) 0.50 

Eta 2701.70 Eta 1457.28 Eta(W) 2000.43 Eta 1598.17 Eta 1655.28 Eta(W) 190.76 

Gamma 142.71 Gamma -110.33 RF 0.99 Gamma 0.94 Gamma -9.06 RF 0 

Tyre 

Weibull-3P Weibull-3P Weibull-3P General Renewal Process Weibull-3P Weibull-2P 
Beta 0.43 Beta 0.70 Beta 1.13 Beta(W) 1.76 Beta 0.38 Beta 0.56 

Eta 495.86 Eta 827.90 Eta 1551.65 Eta(W) 2880.18 Eta 628.42 Eta 382.72 

Gamma 92.67 Gamma -6.84 Gamma -97.42 RF 0.34 Gamma 11.41   

Body 

Weibull-3P Weibull-3P Weibull-2P Lognormal-2P General Renewal Process Lognormal-2P 
Beta 0.95 Beta 0.84 Beta 1.04 Mean 5.76 Beta(W) 0.58 Mean 6.41 

Eta 1148.52 Eta 927.99 Eta 1504.40 Std 1.06 Eta(W) 66.58 Std 1.24 

Gamma -13.85 Gamma 46.75     RF 0.66   
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Table 4.2 Maintainability (TTR) Functions of Truck Subsystems 

 Truck ID 321 Truck ID 322 Truck ID 323 Truck ID 324 Truck ID 325 Truck ID 326 

Electrical 

Lognormal-2P General Renewal Process Weibull-3P General Renewal Process Weibull-2P Weibull-3P 
Mean 0.45 Beta(W) 0.31 Beta 0.40 Beta(W) 0.45 Beta 1.52 Beta 0.34 

Std 1.09 Eta(W) 0.88 Eta 9.06 Eta(W) 0.90 Eta 1.54 Eta 18.37 

  RF 0.97 Gamma 0.32 RF 0.86   Gamma 0.48 

Drivetrain 

Weibull-3P General Renewal Process Weibull-3P Weibull-3P Weibull-3P General Renewal Process 
Beta 0.52 Beta(W) 0.42 Beta 1.11 Beta 0.49 Beta 0.44 Beta(W) 0.35 

Eta 7.67 Eta(W) 0.35 Eta 43.99 Eta 3.73 Eta 2.39 Eta(W) 1.68 

Gamma 0.43 RF 0.73 Gamma -4.15 Gamma 0.49 Gamma 0.49 RF 0.96 

Hydraulics 

General Renewal Process General Renewal Process Weibull-3P Loglogistic-2P Exponential-2P Weibull-3P 
Beta(W) 0.49 Beta(W) 0.35 Beta 0.44 Mu 0.34 Lambda 3.55E-02 Beta 0.21 

Eta(W) 0.61 Eta(W) 0.27 Eta 9.37 Sigma 0.43 Gamma -0.15 Eta 2.15 

RF 0 RF 0.74 Gamma 0.49     Gamma 0.99 

Tyre 

Weibull-3P Lognormal-2P General Renewal Process General Renewal Process Lognormal-2P Weibull-3P 
Beta 0.63 Mean 1.80 Beta(W) 0.33 Beta(W) 0.43 Mean 1.47 Beta 0.69 

Eta 10.48 Std 1.48 Eta(W) 23.12 Eta(W) 0.65 Std 1.31 Eta 5.84 

Gamma 0.57   RF 0.99 RF 0.52   Gamma 0.33 

Body 

General Renewal Process General Renewal Process General Renewal Process General Renewal Process General Renewal Process General Renewal Process 
Beta(W) 0.45 Beta(W) 0.33 Beta(W) 0.43 Beta(W) 0.37 Beta(W) 0.41 Beta(W) 0.31 

Eta(W) 1.20 Eta(W) 0.31 Eta(W) 0.55 Eta(W) 0.39 Eta(W) 0.70 Eta(W) 5.03E-02 

RF 0.97 RF 0.90 RF 9.26E-02 RF 0.97 RF 0.98 RF 0.73 
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In addition, the Eta parameter of the Weibull distribution or General Renewal 

process, also called scale parameter !, refers to the change of the abscissa scale of 

functions. In other words, it determines the approximate accumulation point of data. 

Last, 3-parameter Weibull distributions have a third parameter differently, given as 

Gamma parameter that is also called location parameter ". This parameter is used to 

imply a free zone. It means that it is not possible to observe any point before " value. 

As an example, TBF values of the Hydraulics subsystem of Truck ID 321 are fitted 

into Weibull-3P with # = 0.796, ! = 2701.69, and " = 142.71. In this subsystem, 

since # < 1, then it is in infant mortality behavior with decreasing failure rate. The 

value ! = 2701.69 implies that the probability distribution function is accumulated 

in this value, and " = 142.71 states that the probability of a failure before 142.71h 

of operating after any maintenance is impossible. Therefore, the least expected time 

between failure values is 142.71h. 

In the General Renewal process, there is an additional description in the tables shown 

by RF that states the restoration factor. Since the subsystems defined with this 

process are with a time-dependent trend behavior, then RF values should be less than 

1, inherently. As discussed in Section 3.4, RF values with 0 and 1 points to minimal 

(as bad as old) and perfect (as good as new) behavior. For instance, TBF values of 

the Electrical subsystem of Truck ID 322, which were detected to have a trend in 

Section 3.3.3, have an RF value of 0. On the other hand, TTR values of the same 

subsystem have an RF value of 0.97, indicating that maintenance durations have just 

started deviating from expected durations. If this situation is not interrupted with a 

revision in the available maintenance policy, the RF value may decrease in time. 

On the other hand, normal distribution points to a symmetrical distribution of data 

around the Mean value with a variation described by standard deviation. If TBF 

values are fitted into normal distribution well, then an observable deterioration of 

subsystem can be concluded. Lognormal distribution fits the logarithmic values of 

the data set similar to normal distribution. 
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 Besides, the subsystems whose data can be fitted in exponential distribution have 

very predictable operating and maintenance durations with an expected value of 

1//01230. Typically, a single parameter (/01230, 6) is used to define the 

exponential distribution. However, it is seen that a second parameter (80110, ") is 

also available to identify the starting position of the related probability functions. 

The reliability and maintainability curves of the subsystems of Truck ID 321 can be 

observed in Figure 4.2 and Figure 4.3, respectively. The reliability and 

maintainability curves for the other trucks can be observed in Appendix A. 

 

 

Figure 4.2 Reliability Curves of Truck ID321 subsystems 

Expected TBF and TTR values of the truck subsystems are determined as shown in 

Table 4.3 and Table 4.4, respectively. Table 4.4 reveals an observable variation in 

maintenance duration, especially for Truck ID323 and Truck ID326. 
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Figure 4.3 Maintainability Curves of Truck ID321 subsystem 

 

Table 4.3 Expected TBF Values (hours) of the Truck Subsystems 

 Truck 
ID321 

Truck 
ID322 

Truck 
ID323 

Truck 
ID324 

Truck 
ID325 

Truck 
ID326 

Electrical 1627.0 4964.0 761.6 1142.3 1102.8 1244.9 
Drivetrain 2373.4 1268.3 240.8 1601.0 1487.8 1959.7 
Hydraulics 3213.2 1276.6 2409.4 1818.8 2315.2 382.0 

Tyre 1485.8 1040.9 1388.6 2564.7 2376.0 636.3 
Body 1159.7 1064.1 1480.7 558.2 104.4 1314.4 

 

Table 4.4 Expected TTR Values (hours) of the Truck Subsystems 

 Truck 
ID321 

Truck 
ID322 

Truck 
ID323 

Truck 
ID324 

Truck 
ID325 

Truck 
ID326 

Electrical 2.9 7.3 29.6 2.3 1.4 99.1 
Drivetrain 14.6 1.0 38.1 8.1 6.8 8.6 
Hydraulics 1.3 1.3 24.8 1.9 28.0 205.5 

Tyre 15.5 18.1 142.7 1.8 10.3 7.8 
Body 2.9 1.8 1.5 1.6 2.2 0.4 
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• Direct maintenance cost (DC!"): Direct financial consequences of 

maintenance activities for ;#$	subsystem of =#$truck should be inputted to 

understand the economic burden of maintenance activities. 

• Indirect maintenance cost (IDC!"%): Unit production loss in cases where the 

production is interrupted by any maintenance downtime. Both direct and 

indirect cost values used in the analyses can be viewed in Table 4.5. 

 

Table 4.5 Maintenance Cost Items 

 

The cost values shown here are the mixture of different failure modes with varying 

frequencies of occurrence for the trucks. Therefore, there can be considerable 

differences in the results. One truck might have experienced tire failure that led to a 

replacement, whereas others could have been an easy fix such as a patch-up. 

4.4 Fault Tree Analysis Results for Alternative Maintenance Scenarios 

After introducing datasets for each sub-system, fault tree analyses were performed 

for different maintenance interactions. The analysis has a dynamic simulation 

structure where the subsystems interact continuously on a pre-defined time interval. 

The algorithm checks each subsystem's status and the dependencies between each 

truck's subsystem to reveal system availability variations. Simulation is highly 

stochastic since maintainability (TTR), and reliability (TBF) values are randomly 

assigned from the distribution values pre-determined real datasets. 

Costs 321 322 323 324 325 326 
Electrical 563.56 160.75 960.46 450.76 177.83 2559.90 
Drivetrain 1126.26 306.09 719.12 145.41 362.65 307.68 
Hydraulic 15.43 67.60 85.57 179.16 0.05 0.0391 

Tires 333.64 39498 17825 371.65 1407.20 135.82 
Body 296.29 98.08 174.49 292.67 265.84 125.96 
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Target time defines how many simulation loops can be performed. The model starts 

at 0?@;AB	@;1B, 	@& = 0 and interactions are measured until 	@& = @# where @# is the 

target observation period. Target time needs to be sufficiently large to obtain 

representative results of the system. On this basis, some subsystems may have failure 

occurrences in longer intervals while others may fail in higher frequency. Therefore, 

the period should collect enough number observations from each truck subsystem.  

When the simulation is started, failures occur using the defined probability density 

functions of TBFs (f(x)!") and TTRs (g(x)!"), given in Table 4.1 and Table 4.2. 

Accordingly, the assigned TBF value of one subsystem will directly affect the failure 

occurrence times of other dependent subsystems in the same trucks since the 

dependent subsystems will not be able to operate once the other failed subsystem is 

recovered. Since all truck subsystems are assumed to combine with the OR gate, any 

sub-system failures will interrupt the truck operation. 

The interaction between system availability and maintenance policy is analyzed in 

seven cases, considering corrective maintenance, regular inspections, preventive 

component replacement, and spare part conditions. For each case, uptime/downtime 

characteristics of truck subsystems, number of maintenance activities, and resultant 

financial and availability results will be investigated. 

Maintenance Case01 (Base Model) – Corrective Maint. & Regular Inspection: 

- Subsystems fail randomly according to f(x)!".  

- Failed subsystems are recovered with corrective maintenance for a TTR 

duration assigned randomly from g(x)!". Perfect maintenance is assumed. It 

means the subsystems are recovered to as good as new conditions after 

maintenance.  

- Since the OR gate is active between the subsystems of the same truck, then 

other non-failed subsystems are stopped operating for the assigned TTR 

value of the failed component 
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- Here, inspections are performed with fixed inspection intervals, and 

preventive maintenance is performed when any subsystem is detected to have 

a minor fault that can turn into a failure if not maintained. The delay time 

concept is included in the detection of approaching failures. According to this 

concept, some subsystems can give an alert with anomalies in vibration, 

sound, and similar factors after a threshold level of the operating time. For 

instance, if 90% is assumed for the delay time and if the assigned TBF value 

is 200h, then the subsystem will give an alert in the last 10% of 200h (20h). 

If this alert period overlaps with the regular inspection times, the related 

subsystem will be maintained preventively since any failure has not occurred 

yet. This kind of preventive maintenance is assumed to be completed within 

inspection hours. 

- Spare part inventory and maintenance crew numbers are assumed to be 

unlimited. 

- The simulation was performed for the different observation periods, @# =

8766ℎ,  @# = 17532ℎ, and @# = 26298ℎ. Simulation results are balanced in 

250 simulations, as given in Figure 4.4. A representative view of the 

simulation monitoring screen for 0-1000h can be examined in Figure 4.5. 

 

Figure 4.4 Determination of the Representative Simulation Number 
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Figure 4.5 A Representative View of Simulation Monitoring Screen 

The truck fleet's mean availability and cumulative cost values obtained from the 

Case01 simulation results can be investigated in Figure 4.6 and Figure 4.7. 

 
Figure 4.6 Mean Availabilities of the Trucks for Case01 
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Figure 4.7 Cumulative Direct and Indirect Cost of Maintenance for Case01 

 

In addition, the cumulative number of failures in time can be viewed in Figure 4.8. 

Linear behavior from the graph may refer to expected failure behavior in the general 

truck fleet. On the other hand, downtime and failure number characterization of 

individual subsystems can be examined in Figure 4.9 and Figure 4.10, respectively.  

It is seen from the figures that the Hydraulic subsystem has an observable effect on 

both maintenance downtime and failure number of Truck ID326. On the other hand, 

the Body subsystem of Truck ID325 is seen to fail frequently but recovered in short 

durations. It is revealed that similar subsystems are acting differently for different 

trucks in terms of contribution to downtime and maintenance numbers. Therefore, 

the effects of maintenance on the reliability of subsystems in the same system and 

between the trucks need to be analyzed collectively, as performed in this study.  

 

Cost vs Time

Time, (t)

Co
st,

 (U
SD

)

0.000 8766.0001753.200 3506.400 5259.600 7012.800
0.000

2.000E+6

400000.000

800000.000

1.200E+6

1.600E+6

Cost

Final - fixedinspection
Cost



 
 

50 

 

Figure 4.8 Cumulative System Failure Numbers in Time for Case01 

 

Figure 4.9 Maintenance Downtime Profiles of the Truck Subsystems for Case01 
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Figure 4.10 Failure Number Profiles of the Truck Subsystems for Case01 

In addition, the failure criticality index (FCI), downtime, availability, and failure 

number profiles of the most critical subsystems are shown in Table 4.6.  FCI is an 

index that is the ratio of system reliability to subsystem reliability in the time. If 

subsystem reliability is less, then the criticality will be higher. 
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Table 4.6 Summary of the Simulation for Case01 

Block Failure Criticality   Availability Rating 
Name FCI  Name Availability 

Blocks  Blocks 
Body_325 22.01%  Hydraulics_326 82.87% 
Hydraulics_326 8.41%  Tyres_323 94.98% 
Body_324 6.88%  Electrical_326 95.06% 

Sub-systems  Sub-systems 
Body 6.60%  Hydraulics 96.52% 
Tires 2.86%  Tires 98.27% 
Hydraulics 2.76%  Electrical 98.44% 
Electrical 2.16%  Drivetrain 99.13% 
Drivetrain 1.91%  Body 99.38% 

 
Failures Ranking  Block System Downing Events 

Name Exp.#ofFailures  Name #ofEvents 
Blocks  Blocks 

Body_325 38.28  Body_325 43.63 
Hydraulics_326 14.62  Hydraulics_326 16.78 
Body_324 11.96  Body_324 15.19 

Sub-systems  Sub-systems 
Body 68.89  Body 81.96 
Tires 30.05  Tires 36.27 
Hydraulics 28.89  Hydraulics 35.00 
Electrical 23.38  Electrical 30.87 
Drivetrain 20.21  Drivetrain 25.00 

 
Block Downtime Ranking 
Name Downtime Hour 

Blocks 
Hydraulics_326 1501.34 
Tyres_323 440.22 
Electrical_326 432.77 

Sub-systems 
Hydraulics 1827.85 
Tires 912.27 
Electrical 822.32 
Drivetrain 456.51 
Body 329.35 
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Maintenance Case02 - Corrective Maint. & Regular Inspection & Group Inspection: 

- Differently from the Base Model (Case-1), the group inspection concept 

(opportunistic maintenance) is also included. According to Horenbeek et al. 

(2013), group replacement occurs when a group of components is replaced 

at a fixed time and/or when the system reaches a certain age. Here, group IDs 

are created for each truck, and corrective maintenance of any subsystem 

triggers visual inspection for the other subsystems of the same truck, which 

are not operable anyway. If any approaching failure is detected for non-failed 

subsystems according to delay time, then preventive maintenance is 

performed for the related subsystems. Therefore, a subsystem failure can 

create an opportunity for the preventive maintenance of another subsystem.  

- Similar to Case-1, random failures of subsystems and random corrective 

maintenance durations in case of any subsystem failure are considered in 

Case-2. In addition, the regular inspection concept is also kept in the model, 

and there are not any maintenance crew and spare parts limitations. The 

simulation observation period was taken similarly as @# = 8766ℎ. 

A representative view of the simulation monitoring screen for 0-1000h can be 

examined in Figure 4.11. Furthermore, it can clearly be seen from the graph that the 

subsystems were downed many more times. Further graphs will show the results of 

this situation more clearly. The truck fleet's mean availability and cumulative cost 

values obtained from the Case02 simulation results can be investigated in Figure 

4.12 and Figure 4.13. 

In addition, the cumulative number of failures in time can be viewed in Figure 4.14. 

Furthermore, downtime and failure number characterization of individual 

subsystems can be examined in Figure 4.15 and Figure 4.16, respectively. It is seen 

from the figures that the Hydraulic subsystem of Truck ID326 and Body subsystem 

of Truck ID 325 have kept their trend. Their issues contribute greatly to the low 

system availability for the fleet. 
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Figure 4.11 A Representative View of Simulation Monitoring Screen for Case02 

 

 
Figure 4.12 Mean Availabilities of the Trucks for Case02 
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Figure 4.13 Cumulative Direct and Indirect Cost of Maintenance for Case02 

 

 

Figure 4.14 Cumulative System Failure Numbers in Time for Case-2 
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Figure 4.15 Maintenance Downtime Profiles of the Truck Subsystems for Case02 

 

 

Figure 4.16 Failure Number Profiles of the Truck Subsystems for Case02 
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In addition, the failure criticality index (FCI), downtime, availability, and failure 

number profiles of the most critical subsystems are shown in Table 4.7.  

 

Table 4.7 Summary of the Simulation for Case02 

Block Failure Criticality   Availability Rating 
Name FCI  Name Availability 

Blocks  Blocks 
Body_325 23.63%  Hydraulics_326 81.49% 
Hydraulics_326 8.11%  Electrical_326 94.50% 
Body_324 6.69%  Tyres_323 95.73% 

Sub-systems  Sub-systems 
Body 6,80%  Hydraulics 98.86% 
Tires 2,77%  Tires 97.77% 
Hydraulics 2,65%  Electrical 95.7% 
Electrical 2,17%  Drivetrain 97.78% 
Drivetrain 1,91%  Body 98.39% 

 
Failures Ranking  Block System Downing Events 

Name Exp.#ofFailures  Name #ofEvents 
Blocks  Blocks 

Body_325 41.11  Body_325 47.25 
Hydraulics_326 14.10  Tyres_325 30.92 
Body_324 11.64  Tyres_326 20.485 

Sub-systems  Sub-systems 
Body 11.83  Body 15.37 
Tires 4.84  Tires 15.46 
Hydraulics 4.64  Hydraulics 6.34 
Electrical 3.81  Electrical 5.52 
Drivetrain 3.35  Drivetrain 10.57 

 
Block Downtime Ranking 
Name Downtime Hour 

Blocks 
Hydraulics_326 1622.19 
Electrical_326 482.54 
Tyres_323 374.69 

Sub-systems 
Hydraulics 99.51 
Tires 195.23 
Electrical 376.85 
Drivetrain 194.90 
Body 141.70 
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Maintenance Case03 - Corrective Maint. & Group Inspection: 

- Differently from Case02, the group inspection concept alone is included in 

Case03, and the regular inspection concept is removed from the model. 

Regular inspections are commonly applied in production industries, and 

related machinery is down constantly at regular time intervals. Even though 

it can provide many benefits for anomaly detection, it may decrease system 

availability if inspection intervals are short more than required and the system 

is down unnecessarily. Therefore, it is intended to see if regular inspections 

are really necessary for the current truck fleet. 

- Similarly, the other settings were the same.  

A representative view of the simulation monitoring screen for 0-1000h can be 

examined in Figure 4.17. Furthermore, the truck fleet's mean availability and 

cumulative cost values obtained from the Case-1 simulation results can be 

investigated in Figure 4.18 and Figure 4.19. 

 

Figure 4.17 A Representative View of Simulation Monitoring Screen for Case03 
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Figure 4.18 Mean Availabilities of the Trucks for Case03 

 

 
Figure 4.19 Cumulative Direct and Indirect Cost of Maintenance for Case03 
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In addition, the cumulative number of failures in time can be viewed in Figure 4.20. 

Furthermore, downtime and failure number characterization of individual 

subsystems can be examined in Figure 4.21 and Figure 4.22, respectively.  

 

 

Figure 4.20 Cumulative System Failure Numbers in Time for Case03 

 

 

Figure 4.21 Maintenance Downtime Profiles of the Truck Subsystems for Case03 
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Figure 4.22 Failure Number Profiles of the Truck Subsystems for Case03 

 

In addition, the failure criticality index (FCI), downtime, availability, and failure 

number profiles of the most critical subsystems are shown in Table 4.8. 
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Table 4.8 Summary of the Simulation for Case03 

Block Failure Criticality  Availability Rating 
Name FCI  Name Availability 

Blocks  Blocks 
Body_325 22.41%  Hydraulics_326 80.43% 
Hydraulics_326 8.68%  Electrical_326 94.10% 
Body_324 6.60%  Tyres_323 95.49% 

Sub-systems  Sub-systems 
Body 6.61%  Hydraulics 99.26% 
Tires 2.84%  Tires 98.09% 
Hydraulics 2.76%  Electrical 95.86% 
Electrical 2.18%  Drivetrain 98.01% 
Drivetrain 1.89%  Body 98.79% 

 
Failures Ranking  Block System Downing Events 

Name Exp.#ofFailures  Name #ofEvents 
Blocks  Blocks 

Body_325 37.82  Body_325 38.67 
Hydraulics_326 14.65  Tyres_325 27.91 
Body_324 11.14  Tyres_326 18.87 

Sub-systems  Sub-systems 
Body 11.16  Body 12.55 
Tires 4.82  Tires 13.99 
Hydraulics 4.68  Hydraulics 5.39 
Electrical 3.71  Electrical 4.05 
Drivetrain 3.21  Drivetrain 9.40 

 
Block Downtime Ranking 
Name Downtime Hour 

Blocks 
Hydraulics_326 1715.83 
Electrical_326 517.59 
Tyres_323 395.47 

Sub-systems 
Hydraulics 64.79 
Tires 167.96 
Electrical 363.92 
Drivetrain 174.01 
Body 106.37 
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Maintenance Case04 - Corrective Maint. & Regular Inspection & Spare Part Policy:  

- Considerations of the Base Model are included in Case04 with the addition 

of the tire spare part inventory problem. In this way, it is aimed to see the 

effect of spare parts inventory on system availability. The spare part policy 

of the tire is discussed alone since the other subsystems could not be 

decomposed into their individual components due to the lack of enough 

information in the maintenance records. 

A representative view of the simulation monitoring screen for 0-1000h can be 

examined in Figure 4.23. 

 

Figure 4.23 A Representative View of Simulation Monitoring Screen for Case04 

 

Mean availability and cumulative cost values of the truck fleet obtained from the 

Case-1 simulation results can be investigated in Figure 4.24 and Figure 4.25. 
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Figure 4.24 Mean Availabilities of the Trucks for Case04 

 
Figure 4.25 Cumulative Direct and Indirect Cost of Maintenance for Case04 

This case had the worst availability and costs. Downing system to wait for parts and 

added cost can be easily seen in the results. In addition, the cumulative number of 

failures in time can be viewed in Figure 4.26. Furthermore, downtime and failure 

number characterization of individual subsystems can be examined in Figure 4.27 

and Figure 4.28, respectively.  
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Figure 4.26 Cumulative System Failure Numbers in Time for Case04 

 

 

Figure 4.27 Maintenance Downtime Profiles of the Truck Subsystems for Case04 
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Figure 4.28 Failure Number Profiles of the Truck Subsystems for Case04 

 

In addition, the failure criticality index (FCI), downtime, availability, and failure 

number profiles of the most critical subsystems are shown in Table 4.9. FCI is an 

index that is the ratio of system reliability to subsystem reliability in time. If 

subsystem reliability is less, then the criticality will be higher. 
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Table 4.9 Summary of the Simulation for Case04 

Block Failure Criticality  Availability Rating 
Name FCI  Name Availability 

Blocks  Blocks 
Body_325 22.54%  Hydraulics_326 82.04% 
Hydraulics_326 8.83%  Tyres_323 95.00% 
Body_324 6.82%  Electrical_326 95.57% 

Sub-systems  Sub-systems 
Body 6.67%  Hydraulics 99.38% 
Tires 2.78%  Tires 97.18% 
Hydraulics 2.81%  Electrical 96.40% 
Electrical 2.14%  Drivetrain 98.58% 
Drivetrain 1.89%  Body 99.16% 

 
Failures Ranking  Block System Downing Events 

Name Exp.#ofFailures  Name #ofEvents 
Blocks  Blocks 

Body_325 36.11  Body_325 41.09 
Hydraulics_326 14.13  Hydraulics_326 16.29 
Body_324 10.92  Body_324 13.89 

Sub-systems  Sub-systems 
Body 10.68  Body 12.67 
Tires 4.49  Tires 5.42 
Hydraulics 4.52  Hydraulics 5.46 
Electrical 3.54  Electrical 4.66 
Drivetrain 3.08  Drivetrain 3.79 

 
Block Downtime Ranking 
Name Downtime Hour 

Blocks 
Hydraulics_326 1573.96 
Tyres_323 438.21 
Electrical_326 388.47 

Sub-systems 
Hydraulics 54.15 
Tires 246.90 
Electrical 315.47 
Drivetrain 124.64 
Body 74.02 
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Maintenance Case05 - Corrective Maint. & Regular Inspection with RF=0.25 

- Considerations of the Base Model are included in Case05. However, the 

maintenance is assumed to be not perfect. Therefore, corrective maintenance 

and preventive maintenance in regular inspections will recover the subsystem 

at a level between as bad as old (minimal repair) and as good as new (perfect 

repair). For Case05, the restoration factor of the maintenance activities is 

assumed to be 0.25. In this way, it is intended to see how ineffectiveness in 

maintenance applications may affect the system's reliability. 

A representative view of the simulation monitoring screen for 0-1000h can be 

examined in Figure 4.29. Mean availability and cumulative cost values of the truck 

fleet obtained from the Case05 simulation results can be investigated in Figure 4.30 

and Figure 4.31. This case was the best performing. It increased the cost slightly for 

huge gains in availability and uptime.In addition, the cumulative number of failures 

in time can be viewed in Figure 4.32. Furthermore, downtime and failure number 

characterization of individual subsystems can be examined in Figure 4.33 and Figure 

4.34, respectively.  
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Figure 4.29 A Representative View of Simulation Monitoring Screen for Case05 

 

 

Figure 4.30 Mean Availabilities of the Trucks for Case05 

Block Up/Down - Last Simulation

Time, (t)

 

0.000 1000.000200.000 400.000 600.000 800.000
System

Body_321
Body_322
Body_323
Body_324
Body_325
Body_326

Drivetrain_321
Drivetrain_322
Drivetrain_323
Drivetrain_324
Drivetrain_325
Drivetrain_326
Electrical_321
Electrical_322
Electrical_323
Electrical_324
Electrical_325
Electrical_326

Hydraulics_321
Hydraulics_322
Hydraulics_323
Hydraulics_324
Hydraulics_325
Hydraulics_326

Tyres_321
Tyres_322
Tyres_323
Tyres_324
Tyres_325
Tyres_326 State

Operating Time
Time Under Repair

Mean Availability

Time, (t)

M
ea

n 
Av

ai
la

bi
lit

y

0.000 8766.0001753.200 3506.400 5259.600 7012.800
0.000

1.000

0.200

0.400

0.600

0.800

Mean Availability

Final-0.25
Mean Availability



 
 

70 

 
Figure 4.31 Cumulative Direct and Indirect Cost of Maintenance for Case05 

 

Figure 4.32 Cumulative System Failure Numbers in Time for Case05 
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Figure 4.33 Maintenance Downtime Profiles of the Truck Subsystems for Case05 

 

Figure 4.34 Failure Number Profiles of the Truck Subsystems for Case05 
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In addition, the failure criticality index (FCI), downtime, availability, and failure 

number profiles of the most critical subsystems are shown in Table 4.10.  

 

Table 4.10 Summary of Simulation Over a Year for Case05 

Block Failure Criticality   Availability Rating 
Name FCI  Name Availability 

Blocks  Blocks 
Body_325 12.34%  Hydraulics_326 90.67% 
Tyres_326 6.83%  Tyres_323 94.31% 
Electrical_323 5.93%  Electrical_326 95.13% 

Sub-systems  Sub-systems 
Body 4.76%  Hydraulics 99.46% 
Tires 3.68%  Tires 98.09% 
Hydraulics 2.53%  Electrical 97.78% 
Electrical 3.27%  Drivetrain 98.37% 
Drivetrain 2.05%  Body 99.22% 

 
Failures Ranking  Block System Downing Events 

Name Exp.#ofFailures  Name #ofEvents 
Blocks  Blocks 

Body_325 18.66  Body_325 22.77 
Tyres_326 10.34  Tyres_326 12.64 
Electrical_323 8.97  Electrical_323 12.38 

Sub-systems  Sub-systems 
Body 7.19  Body 9.08 
Tires 5.64  Tires 6.88 
Hydraulics 3.83  Hydraulics 5.03 
Electrical 4.96  Electrical 6.83 
Drivetrain 3.10  Drivetrain 4.11 

 
Block Downtime Ranking 
Name Downtime Hour 

Blocks 
Hydraulics_326 817.96 
Tyres_323 498.62 
Electrical_326 426.78 

Sub-systems 
Hydraulics 47.50 
Tires 167.49 
Electrical 194.63 
Drivetrain 142.83 
Body 68.12 
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Maintenance Case06 - Corrective Maint. & Regular Inspection with RF=0.75 

- The model is exactly the same as Case05. The only difference is that the 

restoration rate after maintenance activities is assumed to be 0.75. 

A representative view of the simulation monitoring screen for 0-1000h can be 

examined in Figure 4.35. 

 

Figure 4.35 A Representative View of Simulation Monitoring Screen for Case06 

 

The truck fleet's mean availability and cumulative cost values obtained from the 

Case06 simulation results can be investigated in Figure 4.36 and Figure 4.37. In 

addition, the cumulative number of failures in time can be viewed in Figure 4.38. 

Furthermore, downtime and failure number characterization of individual 

subsystems can be examined in Figure 4.39 and Figure 4.40, respectively.  
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Figure 4.36 Mean Availabilities of the Trucks for Case06 

 
Figure 4.37 Cumulative Direct and Indirect Cost of Maintenance for Case06 
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Figure 4.38 Cumulative System Failure Numbers in Time for Case06 

 

Figure 4.39 Maintenance Downtime Profiles of the Truck Subsystems for Case06 
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Figure 4.40 Failure Number Profiles of the Truck Subsystems for Case06 
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In addition, the failure criticality index (FCI), downtime, availability, and failure 

number profiles of the most critical subsystems are shown in Table 4.11.  

  

Table 4.11 Summary of Simulation Over a Year for Case06 

Block Failure Criticality  Availability Rating 

Name FCI  Name Availability 
Blocks  Blocks 

Body_325 20.23%  Hydraulics_326 88.35% 
Body_324 6.29%  Tyres_323 94.10% 
Tyres_326 6.20%  Electrical_326 94.94% 

Sub-systems  Sub-systems 
Body 6.24%  Hydraulics 99.39% 
Tires 3.22%  Tires 98.09% 
Hydraulics 2.43%  Electrical 97.43% 
Electrical 2.54%  Drivetrain 98.35% 
Drivetrain 1.86%  Body 99.20% 

 
Failures Ranking  Block System Downing Events 

Name Exp.#ofFailures  Name #ofEvents 
Blocks  Blocks 

Body_325 34.42  Body_325 39.68 
Body_324 10.70  Body_324 13.95 
Tyres_326 10.54  Tyres_326 12.57 

Sub-systems  Sub-systems 
10,62 10.62  Body 12.81 
5,54% 5.54  Tires 6.68 
4,14% 4.14  Hydraulics 5.21 
4,34% 4.34  Electrical 5.91 
3,16% 3.16  Drivetrain 4.04 

 
Block Downtime Ranking 
Name Downtime Hour 

Blocks 
Hydraulics_326 1021.66 
Tyres_323 516.76 
Electrical_326 443.27 

Sub-systems 
Hydraulics 53.24 
Tires 169.89 
Electrical 225.47 
Drivetrain 144.63 
Body 70.40 
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Maintenance Case07 – Detection of Preventive Replacement for Tires 

- Case07 is totally different from the other cases. Here, preventive replacement 

probabilities of individual components are investigated. Since there is not 

enough data and description to decompose subsystems into individual 

components, preventive replacement condition was checked only for tires. 

BlockSim. Caroline (2012) states that two main requirements should be 

satisfied for the potential applicability of preventive component replacements 

as discussed below:  

o The candidate components should be in a wear-out period. In other 

words, the component's failure rate should exhibit an increase in time. 

As discussed in Section 4.3, # > 1 of Weibull distribution or General 

Renewal Process, and normal distribution refers to the wear-out 

period. The tire components having these types of TBF functions can 

be candidates.  

o The cost for planned replacements should be considerably less than 

the cost for unplanned replacements. In addition, the component 

should be eligible for replacement practically instead of repair. It 

should be noted that if the preventative maintenance tasks are not 

performed quite enough, the corrective maintenance costs increase. 

Otherwise, the total maintenance cost will increase unnecessarily if 

the preventive maintenance is carried out more than required. 

Therefore, a balance point should be determined to optimize 

preventive maintenance tasks. 

An illustration of how an optimal component replacement time can be determined is 

seen in Figure 4.41. 
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Figure 4.41 Optimum Component Replacement Decision (Caroline, 2012) 
 
Furthermore, the optimum component replacement can be formalized as: 
 

          
 

 (4.1) 
 
 
 

 
It was detected from the analyses that the curve converges to infinity. In other words, 

it isn’t feasible to replace tire parts preventively. Therefore, this scenario was defined 

as non-applicable. 

 
 
Comparative Evaluation of the Maintenance Cases: 
 
A comparative table showing the results from all the scenarios can be seen in Table 

4.12. 



 
 

80 

Table 4.12 Comparative Table 

 
General Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6 
Mean Availability (All Events): 0.6 0.58 0.56 0.53 0.67 0.64 

Std Deviation (Mean Availability): 0.18 0.17 0.18 0.15 0.15 0.15 

Expected Number of Failures: 173.94 173.96 168.75 160.20 151.22 170.12 

Std Deviation (Number of Failures): 47.88 46.02 49.92 41.88 33.55 40.41 

MTTFF: 6.06 6.76 6.49 6.43 5.99 5.31 

System Uptime/Downtime             
Uptime: 5203.24 5067.37 4943.77 4676.36 5837.63 5578.36 

CM Downtime: 3458.43 3376.08 3612.37 3995.16 2811.42 3076.89 

Inspection Downtime: 104.34 322.55 209.86 94.48 116.94 110.75 

Total Downtime: 3562.77 3698.63 3822.23 4089.64 2928.37 3187.64 

System Downing Events             
Number of Failures: 173.94 173.96 168.75 160.20 151.22 170.12 

Number of CMs: 173.94 173.96 168.75 160.20 151.22 170.12 

Number of Inspections: 40.55 151.81 108.45 36.77 45.35 42.97 

Total Events: 214.49 325.78 277.20 196.97 196.56 213.09 

Costs             
Total Costs (USD): 1,222,972.66 2,334,060.53 1,425,069.46 129,084,676.30 1,248,040.26 1,234,904.78 
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Overall simulation results for the Case01 Model can be seen in Table 4.13. The 

system availability is obtained at 60%, with an expected failure number of 174 a 

year. During 8766h (a year), the system is seen to be down for 3,458h and 104h for 

corrective maintenance and inspections, respectively. A total of 214 maintenance 

activities are expected to be performed, with an approximate direct and indirect 

maintenance cost of $1,222,972. The detailed scenario results for the other cases are 

given in Appendix B. 

 

Table 4.13 The Simulation Results for Case01 Model 

General  
Mean Availability (All Events): 0.60 

Std Deviation (Mean Availability): 0.18 

Expected Number of Failures: 173.94 

Std Deviation (Number of Failures): 47.88 

MTTFF: 6.06 

System Uptime/Downtime  
Uptime: 5203.24 

CM Downtime: 3458.43 

Inspection Downtime: 104.34 

Total Downtime: 3562.77 

System Downing Events  
Number of Failures: 173.94 

Number of CMs: 173.94 

Number of Inspections: 40.55 

Total Events: 214.49 

Costs  
Total Costs (USD): 1,222,972.66 

 

4.5 Discussion and Limitations 

4.5.1 Interpretation of the Results 

The mining industry continually seeks to reduce operating costs while, at the same 

time, increasing equipment reliability and availability (Ruschel et al., 2017).  
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Reducing maintenance and spare part budget for machinery would increase the 

profits directly. However, unplanned downtimes due to a lack of proper maintenance 

and spare part policy can cause observable production losses and machine damage, 

leading to a catastrophic financial burden and loss of market for the company. 

Preventive maintenance is an effective tool to improve machine safety and health 

and is defined as ‘actions carried out on time- or machine-run-based schedule that 

detect, prevent, or mitigate degradation of a component or system to maintain or 

extend its useful life by controlling degradation to an acceptable level.’ It is observed 

from the production industries that preventive maintenance can provide a financial 

saving of more than 18% of the operating cost (Sullivan et al., 2010). However, the 

type and necessity of preventive actions in a maintenance policy should be validated. 

Otherwise, it can create a redundant financial burden and production loss due to 

unnecessary system downs. 

This thesis study investigates alternative maintenance scenarios for mining trucks 

that include different work packages so that each scenario's financial return and 

availability contributions can be revealed comparatively. The results indicate that an 

over-maintenance condition was detected for the current fleet. Scenario 5, which 

improves the system availability most, states that the effectiveness level of the 

current maintenance policy can be dropped to some extent.  In other words, the 

analyses detect that over-maintenance causes frequent downtimes that decrease the 

availability and do not provide too much contribution to expected financial return.  

It was also seen from the current study that data collection significantly impacts the 

usability of the available datasets. If the data was collected unsystematically, it could 

lead to the loss of data that would have been useful otherwise. To avoid this, data 

collection algorithms and systems need to be implemented. Firstly, the information 

has to be collected systematically using standard data collection and storage 

templates with the approval of mine management. Secondly, datasets should be 

monitored and verified in pre-defined periods. It will ensure the minimization of 

human and system-based errors. Finally, related software to keep data organized and 

safe must be used to prevent issues. The system described above should prepare the 
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data to be analyzed directly without preprocessing, saving significant time and 

resources while minimizing data loss. 

In addition, the simulation scenarios show that many possible hidden causes are 

included in the numerical results that should be highlighted with in-place 

investigations. For instance, the weights of maintenance durations according to 

components and why the same components are consuming more time in the repairs 

for different equipment should be investigated with the realities available in the 

mining area. As another example, how to decrease maintenance effectiveness to 

avoid over-maintenance should be discussed with the experts in the field, considering 

available and applicable maintenance work packages. Therefore, for a more 

comprehensive and clear evaluation of each scenario, a data collection system should 

be developed and activated at the start of the observation period, and the related 

people assigned for data collection should be appropriately trained in compliance 

with the analyses to be performed in the future. Otherwise, the current simulation 

results only give where to focus without much detail but do not give the branching 

of the underlying causes.  

4.5.2 Limitations 

It should be noted that any analysis or simulation's safety relies on input datasets' 

reliability. Therefore, as discussed before, the current study evaluates and inputs the 

field data where some missing, improper, or unclear explanations are included. 

Therefore, some pre-processing states were performed before introducing the inputs. 

Therefore, some minor deviations from actual activities in the field can be observed 

in the results. Additionally, limited assistance from the experts and maintenance 

crew was provided by the company in the interpretation phases of data processing 

and simulation. Therefore, some qualitative outcomes of the simulations may not 

comply with the mine's actual maintenance task, crew, and spare part conditions. In 

brief, the simulation results require further investigation with the related experts.  
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In addition, there is a lack of information on the prehistory of the trucks. On this 

basis, any information on where these trucks are operated in which conditions is not 

available. The simulation results showed that some trucks are experiencing more 

frequent failures with longer maintenance duration. It can be a strong indicator that 

the operators and operational conditions of the trucks can differ. Thus, each truck's 

prehistory, operational conditions, and driver-based errors need to be included in the 

simulations for a more comprehensive analysis. At this point, scenarios with similar 

types of machinery working in different conditions, such as ore and waste trucks 

with different routes with varying gradients, road conditions, machine interactions, 

and weather, may fail in comparing the maintenance scenarios. Therefore, 

equipment's current and previous operational conditions can be crucial when 

determining more realistic simulation outcomes. 
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CHAPTER 5  

 

5 CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

Haul truck reliability is one of the most challenging issues in the mining industry due 

to its difficulty in predicting working environment and weather conditions, periodic 

operational and production requirements, and machine performance. Production 

rates and cash flow especially in a surface mine depend on the productivity of this 

mining equipment. At this point, a maintenance policy available in a mining area 

should ensure that trucks are operated above desired availability level by keeping 

operating costs below the allowable limits. However, since haul trucks are massive 

and complex systems exposed to multiple operational uncertainties and failure 

modes in tough operating conditiıns, it is difficult to reveal their stochastic uptime 

and downtime profiles and resultant budget, spare part, and maintenance 

requirements.  

This thesis study presents a comparative simulation of multiple maintenance 

scenarios for a truck fleet by introducing their subsystems’ random uptime and 

downtime characteristics. Accordingly, the study methodology entails (i) 

identification of the system dynamics and classification of truck sub-systems, (ii) 

characterization of uptime/downtime behaviors, (iii) development of system 

configuration with fault trees and integration of TTR and TBF functions, (iii) 

introducing different maintenance scenarios for the same truck configuration, (iv) 

implementation of the case study using dynamic fault tree simulation, and (v) 

analyzing the alternative policies in terms of failure statistics, system availability and 

maintenance cost. On this basis, six different maintenance scenarios were defined: i) 

Corrective maintenance and regular inspection, ii) corrective maintenance, regular 

inspection, and group inspection, iii) corrective maintenance and group inspection, 
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iv) corrective maintenance, regular inspection, and spare part policy, v) corrective 

maintenance and regular inspection with restoration factor of 0.25, and vi) corrective 

maintenance and regular inspection with restoration factor of 0.75. Additionally, 

applicability of preventive component replacement was analyzed for truck tires.  

 

The developed dynamic simulation model using fault tree analysis was applied to a 

truck fleet operated in a surface coal mine in Türkiye. This fleet contains six HD785-

type trucks. SAP maintenance records were used to characterize time-to-repair 

(TTR) and time between failure (TBF) datasets. Six different maintenance scenarios 

were simulated 400 times each. The simulation results show that the fifth scenario 

having corrective maintenance and regular inspection with a restoration factor of 

0.25, gives the highest availability value, which is 67 percent. The results revealed 

that the fleet is over-maintained, and preventive measures in the policy can be 

reduced slightly to increase availability. On the other hand, the first scenario, 

including corrective maintenance and regular inspection alone, minimized the total 

maintenance cost most among the alternative maintenance scenarios. However, it is 

seen that the availability dropped from 67 to 60 percent and the total maintenance 

cost could not be improved much compared to the fifth scenario. Therefore, the fifth 

scenario is the most appropriate maintenance policy for the fleet. 

5.2 Recommendations 

 
The recommendations that can be considered in future studies are given as follows: 

i. Maintenance data records should be in terms of failure modes instead of 

subsystems or components. Therefore, templates or systems that can be 

used for systematical data recording and failure mode labeling should be 

developed for more detailed and realistic analyses. 

ii. Maintenance crew information about the number of qualified people and 

their skills should be examined jointly in future research. 
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iii. Maintenance cost variations for similar failure modes of different 

equipment can be examined by considering operational and 

environmental aspects. 

iv. Different redundancy conditions in the equipment fleet and prioritizing 

equipment number and type for production can be regarded. 

v. The trade-off between over-maintenance and under-maintenance can be 

detailed by revealing the on-site and off-site affecting parameters.  
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APPENDICES 

A. Hypothesis Test Results for Other Trucks 

Table A.1 Trend Test Results of the TTR Datasets of Truck ID322 Subsystems 

Test 
Name 

Test 
Parameters 

Truck Subsystems 

Tyres Body Electrical Hydraulics Drivetrain 

Crow 

AMSAA 

2"/$%  19.7 128.2 70.2 109.3 99.8 

&!",$%&/!!  15.3 40.5 19.8 30.8 32.4 

&!",&/!!  44.5 83.3 52.0 69.0 71.4 

 Accept Ho Reject Ho Reject Ho Reject Ho Reject Ho 

Laplace 

'( 1.57 -4.07 -2.90 -2.46 -3.62 

(&/! 1.95 1.95 1.95 1.95 1.95 

 Accept Ho Reject Ho Reject Ho Reject Ho Reject Ho 

PCNT 

') -0.71 2.37 1.89 1.79 2.43 

(&/! 1.95 1.95 1.95 1.95 1.95 

 Accept Ho Reject Ho Accept Ho Accept Ho Reject Ho 

Lewis 

Robinson 

'(* 1.19 -3.05 -1.96 -1.92 -2.74 

(&/! 1.95 1.95 1.95 1.95 1.95 

 Accept Ho Reject Ho Reject Ho Accept Ho Reject Ho 

DECISION Non-trend Trend  Trend Trend Trend 
 
Table A.2 Trend Test Results of the TBF Datasets of Truck ID322 Subsystems 

Test 
Name 

Test 
Parameters 

Truck Subsystems 
Tyres Body Electrical Hydraulics Drivetrain 

Crow 

AMSAA 

2"/$%  19.5 67.0 20.2 52.3 54.9 

&!",$%&/!!  16.8 37.2 22.9 27.6 29.2 

&!",&/!!  47.0 78.6 56.9 64.2 66.6 

 Accept Ho Accept Ho Reject Ho Accept Ho Accept Ho 

Laplace 

'( 1.21 -0.11 2.19 -0.40 0.69 

(&/! 1.95 1.95 1.95 1.95 1.95 

 Accept Ho Accept Ho Reject Ho Accept Ho Accept Ho 

PCNT 

') -1.14 0.04 -2.13 0.87 -0.24 

(&/! 1.95 1.95 1.95 1.95 1.95 

 Accept Ho Accept Ho Reject Ho Accept Ho Accept Ho 

Lewis 

Robinson 

'(* 1.06 -0.12 1.62 -0.45 0.47 

(&/! 1.95 1.95 1.95 1.95 1.95 

 Accept Ho Accept Ho Accept Ho Accept Ho Accept Ho 

DECISION Non-trend Non-trend Trend Non-trend Non-trend 
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Table A.3 Trend Test Results of the TTR Datasets of Truck ID323 Subsystems 

Test 
Name 

Test 
Parameters 

Truck Subsystems 

Tyres Body Electrical Hydraulics Drivetrain 

Crow 

AMSAA 

2"/$%  13.5 85.8 65.8 57.1 45.7 

&!",$%&/!!  15.3 27.6 29.2 26.0 24.4 

&!",&/!!  44.5 64.2 66.6 61.8 59.3 

 Reject Ho Reject Ho Accept Ho Accept Ho Accept Ho 

Laplace 

'( 3.04 -3.04 -1.50 -0.69 -0.88 

(&/! 1.95 1.95 1.95 1.95 1.95 

 Reject Ho Reject Ho Accept Ho Accept Ho Accept Ho 

PCNT 

') -1.37 2.40 -0.08 -0.54 0.65 

(&/! 1.95 1.95 1.95 1.95 1.95 

 Accept Ho Reject Ho Accept Ho Accept Ho Accept Ho 

Lewis 

Robinson 

'(* 1.09 -3.38 -1.05 -0.47 -1.09 

(&/! 1.95 1.95 1.95 1.95 1.95 

 Accept Ho Reject Ho Accept Ho Accept Ho Accept Ho 

DECISION Trend Trend Non-trend Non-trend Non-trend 

 

Table A.4 Trend Test Results of the TBF Datasets of Truck ID323 Subsystems 

Test 
Name 

Test 
Parameters 

Truck Subsystems 

Tyres Body Electrical Hydraulics Drivetrain 

Crow 

AMSAA 

2"/$%  16.9 33.8 39.3 25.9 54.9 

&!",$%&/!!  13.8 26.0 22.9 24.4 19.8 

&!",&/!!  41.9 61.8 56.9 59.3 52.0 

 Accept Ho Accept Ho Accept Ho Accept Ho Reject Ho 

Laplace 

'( 1.60 0.49 -0.91 1.29 -3.19 

(&/! 1.95 1.95 1.95 1.95 1.95 

 Accept Ho Accept Ho Accept Ho Accept Ho Reject Ho 

PCNT 

') -1.46 0.31 0.52 -1.49 0.58 

(&/! 1.95 1.95 1.95 1.95 1.95 

 Accept Ho Accept Ho Accept Ho Accept Ho Accept Ho 

Lewis 

Robinson 

'(* 1.81 0.54 -1.15 2.04 -1.64 

(&/! 1.95 1.95 1.95 1.95 1.95 

 Accept Ho Accept Ho Accept Ho Reject Ho Accept Ho 

DECISION Non-trend Non-trend Non-trend Non-trend Trend 
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Table A.5 Trend Test Results of the TTR Datasets of Truck ID324 Subsystems 

Test 
Name 

Test 
Parameters 

Truck Subsystems 

Tyres Body Electrical Hydraulics Drivetrain 

Crow 

AMSAA 

2"/$%  35.1 110.7 53.3 20.2 18.9 

&!",$%&/!!  9.6 55.5 19.8 9.6 16.8 

&!",&/!!  34.2 104.3 52.0 34.2 47.0 

 Reject Ho Reject Ho Reject Ho Accept Ho Accept Ho 

Laplace 

'( -2.04 -4.54 -2.33 -1.07 0.12 

(&/! 1.95 1.95 1.95 1.95 1.95 

 Reject Ho Reject Ho Reject Ho Accept Ho Accept Ho 

PCNT 

') 2.06 1.03 1.40 -1.34 -0.54 

(&/! 1.95 1.95 1.95 1.95 1.95 

 Reject Ho Accept Ho Accept Ho Accept Ho Accept Ho 

Lewis 

Robinson 

'(* -0.93 -2.43 -1.68 -0.71 0.07 

(&/! 1.95 1.95 1.95 1.95 1.95 

 Accept Ho Reject Ho Accept Ho Accept Ho Accept Ho 

DECISION Trend Trend Trend Non-trend Non-trend 

 

Table A.6 Trend Test Results of the TBF Datasets of Truck ID324 Subsystems 

Test 
Name 

Test 
Parameters 

Truck Subsystems 

Tyres Body Electrical Hydraulics Drivetrain 

Crow 

AMSAA 

2"/$%  12.8 79.9 41.5 24.0 32.9 

&!",$%&/!!  12.4 74.2 32.4 15.3 22.9 

&!",&/!!  39.4 129.6 71.4 44.5 56.9 

 Accept Ho Accept Ho Accept Ho Accept Ho Accept Ho 

Laplace 

'( 2.01 1.42 0.98 0.27 0.50 

(&/! 1.95 1.95 1.95 1.95 1.95 

 Reject Ho Accept Ho Accept Ho Accept Ho Accept Ho 

PCNT 

') -1.78 -1.36 -1.34 -0.85 -0.04 

(&/! 1.95 1.95 1.95 1.95 1.95 

 Accept Ho Accept Ho Accept Ho Accept Ho Accept Ho 

Lewis 

Robinson 

'(* 1.67 1.11 0.94 0.24 0.48 

(&/! 1.95 1.95 1.95 1.95 1.95 

 Accept Ho Accept Ho Accept Ho Accept Ho Accept Ho 

DECISION Non-trend Non-trend Non-trend Non-trend Non-trend 
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Table A.7 Trend Test Results of the TTR Datasets of Truck ID325 Subsystems 

Test 
Name 

Test 
Parameters 

Truck Subsystems 

Tyres Body Electrical Hydraulics Drivetrain 

Crow 

AMSAA 

2"/$%  8.8 129.6 18.3 12.7 32.3 

&!",$%&/!!  3.2 69.1 16.8 5.6 13.8 

&!",&/!!  20.5 122.7 47.0 26.1 41.9 

 Accept Ho Reject Ho Accept Ho Accept Ho Accept Ho 

Laplace 

'( -0.96 -3.41 0.65 -0.42 -0.88 

(&/! 1.95 1.95 1.95 1.95 1.95 

 Accept Ho Reject Ho Accept Ho Accept Ho Accept Ho 

PCNT 

') 0.49 2.50 -0.25 -0.45 1.46 

(&/! 1.95 1.95 1.95 1.95 1.95 

 Accept Ho Reject Ho Accept Ho Accept Ho Accept Ho 

Lewis 

Robinson 

'(* -0.82 -2.20 0.94 -0.47 -0.49 

(&/! 1.95 1.95 1.95 1.95 1.95 

 Accept Ho Reject Ho Accept Ho Accept Ho Accept Ho 

DECISION Non-trend Trend Non-trend Non-trend Non-trend 

 

Table A.8 Trend Test Results of the TBF Datasets of Truck ID325 Subsystems 

Test 
Name 

Test 
Parameters 

Truck Subsystems 

Tyres Body Electrical Hydraulics Drivetrain 

Crow 

AMSAA 

2"/$%  12.9 158.7 48.5 13.1 33.1 

&!",$%&/!!  9.6 75.9 29.2 6.9 19.8 

&!",&/!!  34.2 131.8 66.6 28.8 52.0 

 Accept Ho Reject Ho Accept Ho Accept Ho Accept Ho 

Laplace 

'( 0.31 -2.91 0.38 0.36 -0.31 

(&/! 1.95 1.95 1.95 1.95 1.95 

 Accept Ho Reject Ho Accept Ho Accept Ho Accept Ho 

PCNT 

') -0.98 2.30 -0.65 0.45 -0.54 

(&/! 1.95 1.95 1.95 1.95 1.95 

 Accept Ho Reject Ho Accept Ho Accept Ho Accept Ho 

Lewis 

Robinson 

'(* 0.27 -2.71 0.44 0.31 -0.34 

(&/! 1.95 1.95 1.95 1.95 1.95 

 Accept Ho Reject Ho Accept Ho Accept Ho Accept Ho 

DECISION Non-trend Trend  Non-trend Non-trend Non-trend 
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Table A.9 Trend Test Results of the TTR Datasets of Truck ID326 Subsystems 

Test 
Name 

Test 
Parameters 

Truck Subsystems 

Tyres Body Electrical Hydraulics Drivetrain 

Crow 

AMSAA 

2"/$%  5.9 132.4 65.4 16.5 53.3 

&!",$%&/!!  5.6 35.6 21.3 11.0 16.8 

&!",&/!!  26.1 76.2 54.4 36.8 47.0 

 Accept Ho Reject Ho Reject Ho Accept Ho Reject Ho 

Laplace 

'( 0.52 -5.45 -1.44 -0.55 -2.87 

(&/! 1.95 1.95 1.95 1.95 1.95 

 Accept Ho Reject Ho Accept Ho Accept Ho Reject Ho 

PCNT 

') 0.45 3.86 0.87 -0.08 2.03 

(&/! 1.95 1.95 1.95 1.95 1.95 

 Accept Ho Reject Ho Accept Ho Accept Ho Reject Ho 

Lewis 

Robinson 

'(* 0.56 -3.65 -1.38 -0.38 -2.06 

(&/! 1.95 1.95 1.95 1.95 1.95 

 Accept Ho Reject Ho Accept Ho Accept Ho Reject Ho 

DECISION Non-trend Trend  Non-trend Non-trend Trend 

 

Table A.10 Trend Test Results of the TBF Datasets of Truck ID326 Subsystems 

Test 
Name 

Test 
Parameters 

Truck Subsystems 

Tyres Body Electrical Hydraulics Drivetrain 

Crow 

AMSAA 

2"/$%  5.8 74.1 24.1 32.0 27.1 

&!",$%&/!!  6.9 37.2 19.8 8.2 12.4 

&!",&/!!  28.8 78.6 52.0 31.5 39.4 

 Reject Ho Accept Ho Accept Ho Reject Ho Accept Ho 

Laplace 

'( 1.66 -1.58 0.45 -2.31 -1.51 

(&/! 1.95 1.95 1.95 1.95 1.95 

 Accept Ho Accept Ho Accept Ho Reject Ho Accept Ho 

PCNT 

') 0.45 1.81 -0.72 1.73 1.48 

(&/! 1.95 1.95 1.95 1.95 1.95 

 Accept Ho Accept Ho Accept Ho Accept Ho Accept Ho 

Lewis 

Robinson 

'(* 1.23 -1.44 0.56 -2.28 -1.61 

(&/! 1.95 1.95 1.95 1.95 1.95 

 Accept Ho Accept Ho Accept Ho Reject Ho Accept Ho 

DECISION Non-trend Non-trend Non-trend Trend  Non-trend 
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B. General Results of Maintenance Scenarios 

Table B.1 The Simulation Results for Case02 Model 
General    
Mean Availability (All Events):  0.58 
Std Deviation (Mean Availability):  0.17 
Expected Number of Failures:  173.96 
Std Deviation (Number of Failures):  46.02 
MTTFF:  6.76 
System Uptime/Downtime    
Uptime:  5067.37 

CM Downtime:  3376.08 

Inspection Downtime:  322.55 

Total Downtime:  3698.63 
System Downing Events    
Number of Failures:  173.96 

Number of CMs:  173.96 

Number of Inspections:  151.81 

Total Events:  325.78 
Costs    
Total Costs (USD):  2,334,060.53 
 

Table B.2 The Simulation Results for Case03 Model 
General    
Mean Availability (All Events):  0.56 

Std Deviation (Mean Availability):  0.18 

Expected Number of Failures:  168.75 

Std Deviation (Number of Failures):  49.92 

MTTFF:  6.49 

System Uptime/Downtime    
Uptime:  4943.77 

CM Downtime:  3612.37 

Inspection Downtime:  209.86 

Total Downtime:  3822.23 
System Downing Events    
Number of Failures:  168.75 

Number of CMs:  168.75 

Number of Inspections:  108.45 

Total Events:  277.20 

Costs    
Total Costs (USD):  1,425,069.46 
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Table B.3 The Simulation Results for Case04 Model 

General    
Mean Availability (All Events):  0.53 

Std Deviation (Mean Availability):  0.15 

Expected Number of Failures:  160.20 

Std Deviation (Number of Failures):  41.88 

MTTFF:  6.43 

System Uptime/Downtime    
Uptime:  4676.36 

CM Downtime:  3995.16 

Inspection Downtime:  94.48 

Total Downtime:  4089.64 

System Downing Events    
Number of Failures:  160.20 

Number of CMs:  160.20 

Number of Inspections:  36.77 

Total Events:  196.97 

Costs    
Total Costs (USD):  129,084,676.30 
 

Table B.4 The Simulation Results for Case05 Model 

General    
Mean Availability (All Events):  0.67 

Std Deviation (Mean Availability):  0.15 

Expected Number of Failures:  151.22 

Std Deviation (Number of Failures):  33.55 

MTTFF:  5.99 

System Uptime/Downtime    
Uptime:  5837.63 

CM Downtime:  2811.42 

Inspection Downtime:  116.94 

Total Downtime:  2928.37 

System Downing Events    
Number of Failures:  151.22 

Number of CMs:  151.22 

Number of Inspections:  45.35 

Total Events:  196.56 

Costs    
Total Costs (USD):  1,248,040.26 
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Table B.5 The Simulation Results for Case06 Model 

General    
Mean Availability (All Events):  0.64 

Std Deviation (Mean Availability):  0.15 

Expected Number of Failures:  170.12 

Std Deviation (Number of Failures):  40.41 

MTTFF:  5.31 

System Uptime/Downtime    
Uptime:  5578.36 

CM Downtime:  3076.89 

Inspection Downtime:  110.75 

Total Downtime:  3187.64 

System Downing Events    
Number of Failures:  170.12 

Number of CMs:  170.12 

Number of Inspections:  42.97 

Total Events:  213.09 

Costs    
Total Costs (USD):  1,234,904.78 
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C. Graphs for Comparative Evaluation of the Maintenance Scenarios 

 

Figure C.1 System Availability in Time for Each Maintenance Scenario 

 

 
Figure C.2 Maintenance Cost in Time for Each Maintenance Scenario 
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Figure C.3 Failure Numbers in Time for Each Maintenance Scenario 
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